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1.0   INTRODUCTION 

Modern immunology provides a detailed but rather qualitative description of the active response 
of the immune system to any entity invading the biological organism and recognized as an 
antigen by the immune cells. In a similar way that a malicious computer program is constructed 
from the same instructions as legitimate software but sequenced in a fashion that makes it 
malicious, an alien proteins are constructed from the same building blocks (amino acids) as the 
cells of the host but differently sequenced. In many ways, the effects of an antigen on a 
biological organism arc similar to those caused by some information attacks on computer 
networks. This is the major reason for considering the active response of the immune system, 
honed to perfection by million-year evolution, as an ideal mechanism for protecting computer 
networks from information attacks. It is said that the immune response is genetically optimized 
for its specific environment; although this environment is different from a computer network, 
this difference narrows with every new advancement in computing technology. 

The specific immune response is the main mechanism enabling the immune system to destroy 
cells of the intruding antigen. This is accomplished by multiplying, on demand, fighter cells that 
are uniquely equipped for counteracting this particular antigen by carrying the genetic sample of 
the intruder. The immune system is prepared to counteract practically any antigen as it contains 
cells that specialize in at least 1015 various genotypes. However, the actual ability of the immune 
system to destroy an intruder depends on its ability to detect and identify the intruder, generate 
specialized fighter cells at the necessary rate maintaining the necessary balance between the 
concentration of the intruder and immune cells, i.e. to actively respond to the intruder. 

Consequently, active response of the immune system includes several stages. It starts from the 
intrusion of the antigen cells in the biological organism. Intruding cells quickly proliferate and 
their concentration exponentially increases. As the result, the probability of a physical contact of 
an antigen cell with a specialized immune cell capable of recognizing it as an antigen increases. 
The initial concentration of specialized cells depends on the previous exposures of the organism 
to this antigen (i.e. acquired immunity). The detection of the antigen triggers the process of 
exponential proliferation of immune cell-fighters specialized to destroy the antigen cells. 
Multiplying antigen cells and multiplying immune fighter cells compete for limited resources of 
the biological organism. It could be seen that the outcome of this process (recovery, chronic 
infection or lethality) greatly depends on the time period between the moment of infection and 
the moment of detection of the antigen. When the proliferation of the antigen cells goes too long 
before detection, its cells consume a greater share of the resources of the host thus preventing the 
fighter cells from sufficiently multiplying, leading to lethality. A high initial concentration of 
specialized fighter cells (after the organism has been immunized for a particular infection) 
facilitates the early detection of the antigen and prevents it from overwhelming the immune 
defenses. After the antigen has been defeated, the residual concentration of specialized fighter 
cells slowly decreases providing high immunity to similar infection. It could be seen that at 
certain conditions, parity between proliferating antigen and fighter cell could be achieved leading 
to chronic infection. Figure 1 below illustrates stages of the active immune response. 
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Figure 1: Stages of Active Immune Response 



The mechanism of active response of the immune system could be described in terms of a 
negative-feedback closed-loop circuit and nonlinear differential equations could be established 
for its particular stages. This would result in a mathematical model of the immune response 
describing the complex interaction of three major factors, concentration of the antigen cells, 
concentration of the specialized immune fighter cells, and the available resources of the 
organism. Such a model would provide a means for the understanding in quantitative terms and 
numerical simulation of the active immune response. Subjected to analytical techniques offered 
by modern control theory, this model would enable us to establish the conditions for three 
possible outcomes of such interaction, full recovery, chronic infection, and lethality, and to 
formulate a control law assuring the full recovery outcome. 

It is understood that the proposed model will be only as accurate as its parameters that in the case 
of the biological immune system could be only roughly guessed at. Therefore, the model cannot 
he effectively used for the prediction of the outcome of a disease caused by antigen. It is equally 
meaningless to utilize the developed model for the modification of the immune response as it is 
well beyond our abilities. However, the importance of the model of the immune response for the 
computer network applications shall not be underestimated because of the following reasons: 

• this model would describe the principle of operation of a system  providing very 
successful defenses against information attacks: 

• in the case of a computer network, parameters of such a model could be accurately 
estimated that makes the model accurate and dependable; 

• such a model could be instrumental for the analysis and design of defense mechanisms 
intended for computer networks. 



Therefore, at the second stage of this research it is proposed to utilize the developed model for 
the description of the infection and recovery of computer networks subjected to information 
attacks. One can realize that every stage of the active immune response could be observed in our 
experience with recent computer epidemics. With the appropriate choice of parameters, the 
model of immune response presents a successful simulation tool for the vulnerability analysis 
and prediction of consequences of information attacks on computer networks. Moreover, the 
control law synthesized using the methodology of advanced control systems to assure a full 
recovery outcome for the immune system could be reformulated in terms of the characteristics of 
computer networks and interpreted as a set of instructions to a network manager. 

This research is aimed at 

1. Establishing a mathematical model of the immune response utilizing recent findings of 
immunology and implementing it in a simulation environment: 

2. Parameter selection of the model in order to assure "credible" simulation of the 
interaction between the antigen and the immune cells described by the three major groups 
of model variables: concentration of the antigen, concentration of the specialized immune 
cells, and the available resources of the organism. 

3. Applying the methodology of modern control theory for the establishing the principles of 
operation of a closed-loop control system assuring the survivability of a computer 
network subjected to an information attack perpetrated by self-replicating malicious 
software 

4. Addressing the feasibility issues pertaining to the development of a computer network 
defenses implementing the active immune-like response to self-replicating malicious 
software 



2.0   IMMUNOLOGY-INSPIRED METHODS IN COMPUTER SECURITY 

Our ever-growing dependence on computer networks is accompanied by ever-growing concerns 
about the networks' vulnerability to information attacks and the dependability of the existing 
network security systems. Major threats, well recognized by government, private institutions and 
individual users, are stemming primarily from self-replicating malicious software. Modern 
worms and viruses propagate through the Internet much faster and cause more damage than their 
predecessors. In 2001 the Code Red worm propagated faster than the Melissa virus in 1999 and 
much faster than Morris' worm in 1988. In the case of the Code Red worm, only several days 
passed from the moment of its first detection to a wide spread propagation of malicious activity. 
Several months later, the Nimda worm caused severe damage within one hour of the detection of 
infection. The Slammer worm caused harm in only a few minutes. Since Code Red, the 
development of complex infection strategies has progressed to such a level that in January 2003, 
the W32.SQLExp worm propagated so fast that human intervention could not prevent its spread. 
A governmental reaction to the threat of virus activity and the destruction that could ensue was to 
create and fund organizations such as the Coordination Center of Reaction to Computer incidents 
(CERT/CC) in 1988 and the Department of National Cyber-Security in 2003. 

Up until now effective counter-measures to worm attacks have consisted of revealing the 
infected hosts as quickly as possible in order to minimize damage and search for the "holes" in 
security systems. However, there are many factors which decrease the efficiency of counter- 
measurers. Every year about four thousand new "holes" in security systems are revealed. 
Presently, more than 200 million computers are connected to the Internet and their numbers are 
growing rapidly. Every moment millions of vulnerable computers are interconnected through the 
Internet. Sophisticated attacks can provide resources to adversaries allowing them to utilize the 
vulnerable computers to aide in carrying out future mass attacks. Many attacks are performed in 
a completely automatic fashion and are distributed at the speed of light throughout the Internet 
disregarding geographical and national borders. Technologies utilized by developers of 
malicious software are becoming more and more complex and in some cases are completely 
concealed from detection which has the effect of increasing the time necessary for the detection 
and analysis of the attack. There is a growing dependency on the Internet among its users and 
many rely heavily on it for business transactions as well as many other important functions. Even 
a relatively short-term interruption of Internet services can cause significant economic damage 
and may subject major governmental and private services to threat. Due to the combination of 
these factors even with the fastest reaction, it is quite reasonable to expect that a major cyber 
attack would cause significant economic losses and a decline in overall workplace productivity. 

Computer network security has been a major area of concentration of research efforts. While 
"traditional" research utilizing methods of computer science, information science, cryptology, 
communication, etc. is still prevalent, a novel direction in computer security was established over 
two decades ago. It was realized that by its very nature, a typical attach on computer network has 
many commonalities with the attack of an alien protein on a biological organism. The similarity 
between the biological immune system and a computer network security system could be 
demonstrated by just a few common features tabulated below [1], [2]. This explains the attention 
to the development of network virus propagation models reflecting methodologies and 
terminology acquired from biological immune systems. It is becoming increasingly common to 



find solutions, inspired by epidemiology and immunology, applied to various intrusion 
detection/mitigation systems for computer/networks successfully dealing with malicious 
software. 

Table 1. Similarity Between Biological Systems and Computer Networks 

Biological Systems Computer Networks 

High complexity, high connectivity, 
extensive interaction between components, 
numerous entry points  

High complexity. high connectivity, 
extensive interaction between components, 
numerous entry points  

Vulnerability to alien microorganisms that 
can quickly contaminate the system resulting 
in its performance degradation and collapse 

Vulnerability to malicious codes introduced 
in the system result in unauthorized access to 
information and services and denial of 
service 

Alien microorganisms as well as cells of a 
biological system arc composed of the same 
building blocks, a small number of basic 
amino acids 

Malicious and legitimate software are 
composed of the same building blocks - 
basic macro commands 

The difference between alien 
microorganisms and the healthy cells of a 
biological system is in the (gene) sequencing 
of their building blocks 

The difference between malicious codes and 
the legitimate software of a computer 
network is in the sequencing of their building 
blocks 

Invading   alien   microorganisms   proliferate 
within the host consuming its vital resources 

Information attacks are perpetrated by self- 
rcplicating malicious software that consumes 
critical resources of the computer network in 
order to proliferate  

Immune defenses compose a multitude of 
semi-autonomous specialized, cooperating 
and communicating agents - immune cells 

A multitude of semi-autonomous specialized, 
cooperating and communicating agents - is 
the format of modem software systems  

In 1991 Kephart pioneered the application of epidemiological models for the mathematical 
description of the complex dynamic phenomenon of propagation of self-replicating software 
such as simple file viruses [3]. File viruses distribution in networks was formalized in terms of 
probability laws [4, 5] for homogeneous, localized and random replication patterns. He should be 
credited for the introduction of the very concept of immune system for computers in [6] and its 
further development in [7] and [8], [9]. Worms have received true recognition after the attack of 
the Code Red worm in July, 2001. Consequently, the first propagation case study was presented 
in [10], where authors utilized the collected data for the analysis of the infection and disinfection 
rates. More fundamental analysis of the worm propagation dynamics was performed for SQL 
Slammer worm in [ 11 ]. 



The deterministic and stochastic nonlinear mathematical models developed by Kephart [3-7], 
alongside with the development of the theory of mathematical epidemiology, has formed the 
basis for more advanced mathematical models of immune systems representing and describing 
networks. Epidemic based models to explore several defense strategies that take into account 
network connectivity as well as the comparison of passive defenses with active defenses in 
customer networks is discussed in [12]. A continuous epidemic model is used to consider 
effectiveness in terms of the total number of protected hosts, the total consumed network 
bandwidth, and the peak scanning rate. These equations include a stochastic parameter which 
reflects the scanning rate of an infected host and the mean probability of selecting a certain 
address [13]. A model which takes into account variable infection rates and variable cure rates to 
take into account the rate and pattern of infection, the network topology, and human 
countermeasures is discussed in [14]. Discrete mathematical equations that analytically model 
virus propagation in any network including real and synthesized network graphs are formulated. 
A general epidemic threshold condition that applies to arbitrary graphs is considered as well as 
an epidemic threshold model which subsumes many known thresholds for special-case graphs 
(e.g., Erdos-Renyi, BA power-law, homogeneous). The threshold tends to zero for infinite 
power-law graphs [15]. Wang et al. [16] present the analysis of epidemiologic models for 
computer networks including the Kephart-White model [3, 4], the Staniford et al. model [17], the 
Pastor-Satorras et al. model [18-23], and the Barabasi et al. model [24]. It was pointed out that 
studies carried out by Kephart and White are based on topologies that do not represent modern 
networks, Staniford et al. reported a study of Code Red propagation, but did not attempt to create 
an analytic model, the more recent studies by Pastor-Satorras et al. and Barabasi et al. focused on 
epidemic models for power-law networks. The simulation and examination of several key 
characteristics of infection, including the rate of infection through the network and the rate at 
which individual nodes are re-infected during an attack as well as the theory that the effect of 
immunization is only effective on certain nodes in the network is discussed in [25]. The 
Analytical Active Worm Propagation model (AAWP) utilizes a discrete time model and 
deterministic approximation to describe the spread of active worms [31]. It characterizes the 
behavior of worms that use random scanning techniques. The model is capable of the 
characterization of the spread of active worms. The AAWP model is also extended to 
characterize the spread of a worm that utilizes local subnet scanning. The AAWP model 
considers the patching rate and the time taken to infect a machine. The first commercial-grade 
immune system that can find, analyze, and cure previously unknown viruses faster than the 
viruses themselves can spread is discussed in [30]. A worm simulation model is developed to 
model the large-scale spread dynamics of a worm and its effects on the network. A homogeneous 
deterministic epidemic model and a stochastic epidemic model are considered. A spatial 
epidemic model in order to study scan traffic flows is also discussed in [26]. The space of worm 
containment systems using reaction time, containment strategy, and deployment scenario and the 
use of containment mechanisms, content filtering, and blacklisting, in order to control network 
epidemics are discussed. A continuous model is developed for simulating worm growth and 
worm containment systems [32]. The two-factor model which is more suited to modeling internet 
worms as classical epidemic models is developed. Worm propagation is modeled as a continuous 
differential equation and simulation is done in discrete time. Recursive filtering algorithms for 
stochastically dynamic immune computing systems are discussed in [33]. 

The development of a mathematical model of the immune system by investigating immune 
system processes and optimizing the immune system response is the first step in creating an 



immune response to virus attack. Currently, in the study of immune system control, there exist a 
number of methods connected to processes of optimization intended to solve several problems 
including immunotherapy and immuno-correction. These methods are also involved in 
stimulation of the immune system and its distinct cellular populations. The given problems are 
frequently treated within the framework of optimal control synthesis with respect to chosen 
performance criterion. The optimal control approach is used in the following problems and 
applications. The therapeutic enhancement of innate immune response to microbial attack is 
addressed as the optimal control of a dynamic system [34]. In the model immune response is 
augmented by therapeutic agents that kill the pathogen directly, that stimulate the production of 
plasma cells or antibodies, or that enhance organ health. Therapeutic enhancement of humoral 
immune response to microbial attack is addressed as the stochastic optimal control of a dynamic 
system [35]. Without therapy, the modeled immune response depends upon the initial 
concentration of pathogens in a simulated attack. Immune response can be augmented by agents 
that kill the pathogen directly, that stimulate the production of plasma cells or antibodies, or that 
enhance organ health. Using a generic mathematical model of immune response to the infection 
(i.e., of the dynamic state of the system), previous papers demonstrated optimal open-loop and 
neighboring-optimal closed-loop control solutions that defeat the pathogen and preserve organ 
health, given initial conditions that otherwise would be lethal [34,36]. Therapies based on 
separate and combined application of the agents were derived by minimizing a quadratic cost 
function that weighted both system response and drug usage, providing implicit control over 
harmful side effects. Optimal control for a class of compartmental models in cancer 
chemotherapy is discussed in [37]. Optimal control in a model of dendritic cell transfection 
cancer immunotherapy is explored in [38]. An optimal Human Immunodeficiency Virus (HIV) 
treatment by maximizing immune response is discussed in [39, 40, 41, 42, 43]. A general 
mathematical model for cancer chemotherapy as an optimal control problem for a bilinear 
system is considered. The necessary and sufficient conditions for strong local optimality of bang- 
bang controls are developed. These results apply to a 3-compartment model which besides a 
killing agent also includes a recruiting agent. For this model it is shown that singular controls are 
not optimal, in fact singular regimes for the killing agent are locally maximizing with many 
optimal bang-bang trajectories near the non-optimal singular arc [44, 45]. A mathematical model 
for the dynamics between tumor cells, immune-effector cells, and the cytokine interleukin-2 (IL- 
2) is developed. An optimal control strategy is developed in order to maximize the effector cells 
and the interleukin-2 concentration and to minimize the tumor cells using numerical techniques 
[46]. 

More recently, the concept of an active defense mechanism for a computer network attacked by a 
worm was presented by Liljenstam and Nicol in [31], where authors discussed different models 
of active defenses and their effect on the network throughput. The active immune-like network 
response was called reactive antibody defense in [32]. The consideration of active defense 
mechanisms has immediately prompted the consideration of the effect of limited network 
resources, such as bandwidth. It was pointed out that the deployment of a so-called anti-worm 
may significantly consume network bandwidth as well as in the case of a malicious worm [33]. 
In [33] authors emphasize the importance of applying optimal reactive response that takes into 
account the infection and treatment costs in terms of network resources. Authors discuss possible 
ways to determine optimum level of the defense efforts to be applied for a given rate of infection 
spread that would minimize some total cost function. 



A new generation of defense mechanisms for computer networks, minimizing the need for 
human intervention, became increasingly popular. Authors in [26] presented a technique for 
automatic generation of an anti-worm through detecting and substituting payload of the 
malicious worm. As a result, they proposed a method that has a potential for transforming a 
malicious worm into an opposing anti-worm. A system for automatic revealing susceptible 
points and generating a patch for target application is presented in [27]. A feasibility of 
automatic signature generation for worms perpetrating buffer overflow attacks has been studied 
in [28], [29]. 

The problem statement for the optimal control of biological systems is formulated as 
minimization of some criteria that represents the purpose of the immune system to the best 
understanding of the researcher. For example, the problem of cancer chemotherapy has been 
formulated [37, 47-49] as an optimal control problem over a fixed interval [0: T\ with objective 
given in Bolza form as 

y(w) = rW(r) + Jw,(/V//->min. (1) 

where r = (r,,...,rn) is a row-vector of positive weights and the penalty term rN(T) gives a 
weighted average of the total number of cancer cells at the end of the fixed therapy interval 

[0; T\. The control w, - signifies the immune fighter agent. The number of cancer cells which arc 

killed and thus do not undergo cell division at time / is given by the portion ux(t) of the outflow 

of the last compartment, i.e. z/,(0 is proportional to the fraction of ineffective cell divisions. 

Since the drug kills healthy cells at a proportional rate, the control //,(/) is also used to model the 
negative effect of the drug on the normal tissue or its toxicity. Thus the integral in the objective 
models the cumulative negative effects of the killing agent in the treatment. Side effects of 
blocking and recruiting agents are ignored in this formulation. The objective functional is the 
effect of the immunotherapy while minimizing the cost of the control [47]: 

d/->max,       (2) 

Here the amount of effector and Interleukin-2 cells are minimized while the number of tumor 
cells and the cost of the control arc maximized. B is a weight factor that represents a patient's 
level of response to the treatment. The optimal therapeutic protocol [44] is derived by 
minimizing a treatment cost function J, that penalizes large values of pathogen concentration, 
poor organ health, and excessive application of therapeutic agents over the fixed time interval, 
[/„./,• | and at the end of the treatment interval. The objective functional to be maximized is [43] 

y(w,,w2) = jlr-(/*,*/■ + Aw;)]c//-> max, (3) 



The first term represents the benefit of T cells and the other terms are systemic costs of the drug 
treatments. The positive constants ,4, and A2 balance the size of the terms, and w,\w; reflect the 

severity of the side effects of the drugs. When drugs such as interleukin are administered in high 
dose, they are toxic to the human body, which justifies the quadratic terms in the functional. The 
goal is to maximize the number of Tcells and minimize the systemic cost to the body. 

Classical methods such as the principle of the Pontryagin [50, 51] and Bellman dynamic 
programming [52, 53] are used to solve the problems associated with the optimal control of 
biological system immune response [34-49]. However, the powerful mathematical methods of 
modern control theory such as dynamic programming can be applied to solve the stated 
optimization problems even in the case when other methods fail due to computational 
complexity. It directly involves tasks which entail the control synthesis problem or optimization 
problems for computer networks [52, 53]. The method of dynamic programming is used in 
research and in the solution of problems of optimal control for processes in conditions of 
uncertainty which are typical for computer networks. 

In the case of immune system models of computer networks, the problems of optimal response 
synthesis were solved, according to the problem statement, through defining an optimal 
trajectory of virus attack suppression using anti-virus programs with respect to different initial 
conditions [3, 4, 10, 11] in the absence of external disturbance. However, in recent results [54], 
Pontryagin's Principle was used in finding the optimal control solution for immune system based 
network models by analogy with the cost optimization problem of Goldman and Lightwood [55] 
which consisted of minimizing the value of costs incurred from both disease and treatment in 
biologic epidemiological models. The first cost to be minimized is the cost of infection which is 
represented by the average delay caused by reduced system performance and increased network 
traffic. The other cost to be minimized is the cost of treatment which can be represented by node 
delay due to recently increased filtering. This model [55] uses nonlinear differential equations to 
provide a qualitative understanding of viral spread. 

In the presented work the main principles and mechanisms of immune system response are 
utilized to solve the problems concerning the development of an optimal computer network 
immune system response for defense against attacks by malicious software. The main feature of 
the work is the design and the careful substantiation of a mathematical model of the immune 
response of a computer network including a description of the dynamics of change of the number 
of infected hosts, the number of detected and cured computers with anti-virus programs, as well 
as the dynamics of change of resources as a degree of computer network bandwidth loading 
under activity of viruses and anti-virus software. The mathematical model is to be constructed 
according to the combined influence of virus attacks and anti-virus software, and also their direct 
influence on computer network resources. 

In 2001-02 the authors were engaged in the project BASIS (Biological Approach to System 
Information Security) funded by Air Force Research Laboratory. This effort was aimed at the 
establishment of important similarities between a biological immune system and a computer 
network subjected to an information attack that could be explored for the development of the 
next generation of computer network defenses. This project resulted in a number of publications 
[1], [2] and provided the team with valuable new concepts in computer security. 
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Project Recognition of Computer Viruses by Detecting their Gene of Self Replication, also 
funded by the air Force Office of Scientific Research (AFOSR), has been exploring the notion 
that while most malicious software self-replicates in order to create a computer epidemic 
maximizing its destructive effect, self-replication of legitimate software is very uncommon. At 
the same time, the number of practical self-replication techniques utilized in viruses and worms 
is quite limited and requires the developers of new attacks to utilize the same "old" self- 
replication techniques in new viruses and worms. Consequently, the detection of self-replication 
functionality in computer code provides the basis for the detection of both known, and what is 
more important, previously unknown malicious software. It was found that monitoring and 
analysis of system calls during the execution time provides the most dependable approach for the 
detection of attempted self-replication [56]. This has resulted in the development of a Dynamic 
Code Analyzer (DCA), a resident software tool that monitors system calls and detects specific 
subsequences (patterns in the system call domain) indicative of self-replication. The process 
engaged in self-replication would be suspended and the user is given an authority to continue or 
terminate the process. The DCA has been successfully tested against both known and previously 
unknown malicious software. It could be seen that while DCA may not prevent the damage 
caused to an individual host, it surely prevents the development of computer epidemics. 

It is expected that a self-replicating anti-worm would implement the most advanced propagation 
strategies resulting in disinfection and/or immunization of individual hosts. Consequently, both 
the worm and anti-worm activity has to be quantified by the number of infected hosts and the 
number of disinfected or immunized hosts correspondingly. Worm activity has a strong impact 
on the bandwidth of networks. The bandwidth of a network can be considered as the most 
relevant network resource that affects both the quality of network operation as well as the 
propagation of self-replication software. Consequently, the bandwidth of a network becomes a 
key factor to be addressed in a mathematical model of the network's immune response. While 
there are many alternative ways to quantify the bandwidth of a network, it typically represents 
the amount of transmitted information per unit of time. 

The resultant AIR model follows the principles of operation of a biologic immune system 
describing the interaction between resources of the organism, antigens, and the immune system. 
The model variables represent (1) network resources, expressed as the available capacity 
(bandwidth) of the information channels (bits/sec) utilized by the worm and anti-worm software, 
(2) number of disinfected/ immunized hosts, and (3) number of infected hosts. It could be seen 
that the above variables are interrelated: differential increments of infected and disinfected hosts 
directly affect the network bandwidth, propagation rates of the worm and anti-worm depend on 
the available network bandwidth, the number of infected computers depends on the propagation 
rates of worm and anti-worm, etc. The developed model comprises several nonlinear stochastic 
differential equations; the stochastic nature of the AIR model is reflected by the fact that the 
numbers of infected and disinfected/immunized hosts are statistical estimates of the respective 
quantities that in reality could be obtained by the scanning of a relatively small group of 
randomly chosen hosts (selective sampling). 

In summary, the following critical features of the active immune response could be noted: 
• Distributed detection/identification mechanism 
• Synthesis of highly specialized defense agents on demand 
• Controlled self-replication of the defense agents 
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• Efficient status assessment of the network 
• Negative feedback control assuring sustainable operation of the network 

The implementation of the active immune-type response in a computer network security system 
provides the only alternative in the assurance of dependable network operation of in the nearest 
future. This could be achieved by the development of a fully automatic computer network 
security system capable of timely detection and mitigation of information attacks perpetrated by 
self-replicating malicious software is proposed. The system will detect an attack and synthesize 
and deploy specialized self-replicating anti-worm software for attack mitigation. It will require 
an advanced feedback control scheme to insure the observability and controllability of the 
overall process thus preventing the overload of the network bandwidth will be implemented. 
Efficient procedures for attack detection, feedback generation and control of self-replication of 
the anti-worm are to be developed. 
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3.0   MODELING THE IMMUNE-TYPE RESPONSE OF A COMPUTER NETWORK 

A mathematical model provides the basis for the implementation of various control schemes 
facilitating the deployment of an "observable and controllable" anti-worm within the limited 
bandwidth of the network thus achieving sustainable operation of a network subjected to an 
information attack. 

Mathematical modeling the immune response necessitates analyzing the factors responsible for 
the propagation of viruses and revealing the most significant of them in order to define strategies 
which have a high probability of being used by the creators of worms in the future. 

Developers of malicious software are constantly deploying new worms and optimizing their 
distribution speed. Nowadays there are two types of viruses; those which effectively work in the 
Internet and those which work in a local area network. Quickly propagating Internet worms such 
as Code Red and SQL Slammer are much less effective in a local area network than viruses 
using local addressing such as W32.Blaster. It is possible to create a hybrid virus which will 
randomly choose a network, and consequently scan it. 

Scanning a network can be performed by scanning via a predetermined "hit list" or scanning by 
permutation. When scanning from a hit list, the virus selects only a few computers from a list of 
thousands of vulnerable TP-addresses. Permutable scanning is performed in a random fashion 
making sure that IP addresses are not scanned more than once. 

It should be noted that Slammer did not use either of these two types of scanning to achieve its 
fast and massive world wide propagation. This worm used random scanning only. In other words 
the worm used the Pseudo Random Number Generator (PRNG) to generate a list of IP addresses 
which were used to scan for hosts accessible via UDP port 1434. After the detection of such 
computers, the worm sends them its shell code in an attempt to infect them and continues 
scanning for vulnerable machines. 

Although random scanning is considered to be ineffective in comparison with other IP address 
generating techniques, it is still a fast enough technique to be extremely devastating. In fact it 
was so impetuous, that the majority of network administrators were unable to respond to the 
worm before their systems became infected. 

The model results of [15] demonstrate how different scanning strategies influence the total speed 
of virus propagation. According to the given results, the factors having the greatest influence on 
a simulated distribution of a network virus have been revealed as follows: 
i)     Address sampling: The method of address sampling has a huge impact on the speed of virus 

propagation. Various methods can include completely random sampling, random sampling 
with local preferences, and consecutive polling, 

ii)    Multithread processing: Scanning in a single thread of the process is much lower in many 
duplicated threads, 

iii)   Method of preliminary scanning: Defining hosts by "listening" to the required port before 
sending data to the hosts boosts the effectiveness of the worm. 
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In current network immune systems, [12, 17-23], mathematical models are described by 
stochastic equations and are characterized as Markov processes. The following discussion 
constitutes the basis of the work and is intended to consider several variants of the presented 
models. 

In order to propagate, computer worms scan a wide-area network, striving to find vulnerabilities 
in software of individual hosts. Having found the IP-address of a vulnerable host, the worm 
simply injects itself from the network into the unprotected machine using previously revealed 
vulnerabilities. Once installed in the host's memory, the worm, searches for other vulnerable 
computers and sends itself to their IP addresses. While different types of worms use different 
propagation strategies and exhibit different propagation rates, all of them successfully propagate, 
using the slightest vulnerability to penetrate existing security systems. It could be seen that the 
number of infected (or scanned) hosts is one of the variables quantifying the attack. 

Worm activity has a negative impact on the bandwidth of networks. For example, the code size 
of the quickly propagating Slammer is very small, 404 bytes including the header. The small size 
accounts for the high speed of its propagation. During the first minute of attack, the quantity of 
infected computers grew exponentially, doubling every 8.5 seconds. By searching for potential 
victims during a 10-minute time period, the worm scanned about 3.6 billion out of approximately 
4 billion existing Internet addresses, reaching the scanning rate of 55 million hosts per second 
during the first three minutes of the attack. As the attack progressed, this rate decreased due to 
the limited networks' bandwidth. Although the worm did not carry destructive instructions, as 
did Code Red and Nimda which changed files and damaged web-sites, it caused serious damage 
during the peak of the epidemic consuming a significant portion of the Internet bandwidth, and 
interfering with the operation of many servers. Consequently, the bandwidth constitutes the main 
network resource relevant to our problem, and properly quantified presents another important 
characteristic of the attack. 

A mathematical model of the network response cannot be established without describing the 
effects of anti-worm activity, i.e. the worm-like propagation of anti-worm programs. Such anti- 
worm technology could be exemplified by Welchia, which is one of a few worms intended for 
the neutralization of another malicious program, Blaster worm. In the same way as Blaster, 
Welchia penetrates into a computer through a gap in Windows firewall, first having verified that 
the computer is infected with Blaster. Welchia then deletes Blaster, completely restores the 
attacked system, and loads the Microsoft update thereby fixing the vulnerability. 
Understandably, the propagation of anti-worms is affected by the limited networks' bandwidth 
and can be described by the number of disinfected (or scanned) hosts or released anti-worm 
software units. 

Now it could be seen that the mathematical model of the network's immune-type response 
should describe the complex, dynamic interaction of three factors, the number of infected hosts 
(or scanned by the worm), the number of disinfected hosts (scanned by the anti-worm, or 
released anti-worm software units) and their combined effect on the network bandwidth. 
Following the principles of operation of the immune system describing the interaction between 
resources of the organism, antigens, and the immune system, we bring into consideration the 
basic variables of the mathematical model establishing the correspondence between the 
"biological" and "computer network" concepts. Figure 2 below provides a block diagram of a 
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computer model of active immune-type response and simulation results reflecting various initial 
conditions, severity of infection, level of the resources of the organism, and level of immunity of 
the organism (i.e. previous exposure to the same attacker). 
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Figure 2: Block Diagram of a Mathematical Model of Active Immune-type Response and 
Simulation Results Corresponding to Different Initial Conditions 
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3.1. Continuous-time Model 

System resources: The bandwidth represents the joint capacity of the network's communication 
channels and could be expressed in bit/sec. During the active network response the bandwidth is 
utilized by both the worm and anti-worm. Introduce variable W(t) that denotes the bandwidth 
consumed by the worm and anti-worm during the attack. Note that before or after attack this 
variable exhibits all properties of a characteristic of a stable, inertial system and exponentially 
returns to the value of zero with time (network "inertia" accounts for the finite connectivity 
within the network, its distributed nature, and various phenomena slowing its operation). The 
equation describing the natural dynamics of the network bandwidth in the absence of attacks 
could be written as: 

^> + riT(/) = 0,    W(0) = W0 (4) 
at 

where y>0 represents the "natural" rate of change of bandwidth, and Wn > 0 is some initial 

value. 

Number of infected hosts: Let variable X(t) represent the number of infected computers that 
would exponentially increase due to the worm propagation and decrease due to the anti-worm 
activity. The equation describing the dynamics of the number of infected computers at the very 
early stage of the attack could be described as: 

^j!l-aX(t) = 0, X(0)~ (5) 
at 

where a>0 is the "natural" rate of change of quantity X(t), X{) is some initial value 

characterizing the intensity of the attack. 

Number of deployed units of anti-worm software: Let Y(t) represent the number of deployed 
units of anti-worm software. It is expected that this number, governed by some control 
mechanism, will be exponentially increasing to oppose the propagating worm and decreasing as 
the worm if being defeated. The natural dynamics of the appropriate process at the early stage of 
the attack can be defined as: 

^l + £y</) = 0,   Y(0) = 0 (6) 
dt 

where ß > 0 represents the "natural" rate of change of variable Y(t). 

Now let us consider the interaction of the above variables during the attack. The network 
bandwidth during the attack will be consumed by scanning activities performed by worm and 
anti-worm, and file transmission causing infection and disinfection of computers. To quantify 
these effects, equation (4) is extended as: 
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dW(t) 

dt 
+ yW(t) = 0X(t) + ÖY(t) (7) 

where 6X{t) and ÖY(t) represent the bandwidth consumption by the propagating worm and 
anti-worm correspondingly, 6 and 8 are positive constants. 

Reconsider equation (5) taking into account that the bandwidth consumption slows the worm 
propagation process and the anti-worm activity can reverse it. This reality could be described as 
follows 

^jH-[a.AlVU).jUY(y)]X(t) = 0 
dt 

where A and ju are positive proportionality coefficients. 

(8) 

Now let us modify equation (6) accounting for the effect of the changing network bandwidth on 
the propagation of the anti-worm and assuming that the anti-worm generation effort is 
proportional to the number of infected computers (simple proportional control law). Then the 
number of deployed units of the anti-worm software will be changing according to the equation: 

dY(t) 
dt 

+ [j3 + <pW(t)]Y(t) = pX(t)Y(t) (9) 

where pis shows the rate of detection of the infected hosts. Note that the product 
p X(t)Y(t) signifies the fact that as the number of infected hosts decreases, it becomes more 
difficult to account for them by the control activity. 

Thus, the mathematical model of the immune-type response of a computer network is described 
by the following system of continuous nonlinear differential equations, describing the inertial 
properties of the network and complex interaction between its key variables, the increment of the 
network bandwidth, the number of infected hosts, and the number of deployed units of the anti- 
worm software: 

dW(t) 
dt 

dX(t) 

= -yW(t) + 0X(t) + öy(t) 

= (-AW(t) + a-vY(t))X(t) 
at or 

,Ijll = (.lpfV(l) + pX(t)-ß)Y(l) 
at 

(10) 

W(t) -r       6 8 [W(t) 

X(l) = -XX{t)      a -ßX(t) \X(t) 

nn -<pY(l)   pY(t) -ß YU) 

(11) 
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with the initial conditions 

^(0) = 0, X(0) = X0>0,   Y(0) = Y0>0 (12) 

Analysis of the above equations indicates that they represent the natural motion of a nonlinear 
system that in the case of global asymptotic system stability and regardless of the initial severity 
of the attack, signified by the value of X(h results in 

>F(oo) = 0, A-(oo) = 0,   y(oo) = 0, (13) 

i.e. full recovery of the network. It could be seen that the above assumption is not realistic unless 
the "sense of reality" is assured by the condition 

W(t)<WMAX'= — 
A, 

thus preventing the full congestion of the network communication channels. 

(14) 

It is important to realize that equations (10, 11) are stochastic by their very nature: their 
parameters reflect the combined behavior of numerous hosts of the network and therefore the 
obtained model can reliably describe the network in general but not any individual host. 
Moreover, numerical values of the model parameters reflect properties of a particular network 
and are subject to change depending on many factors including the propagation engine and 
payload of the particular worm. 

Figure 3 presents the simulation setup implementing the above model in the SIMULINK 
environment. 
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Figure 3: Simulation Setup 
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The results of the simulation experiment (Fig. 4) indicate that with the appropriate choice of the 
model parameters, it realistically describes the nature of the active network response (in relative 
units): the increase of the number of infected hosts from some initially introduced value, increase 
of the number of deployed anti-worm software units in response to the attack, drop of the 
bandwidth resource of the network due to the worm and anti-worm propagation, and finally, the 
full recovery of the network from the attack. 
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Figure 4: Propagation Dynamics of the Worm and Anti-worm During Active Network 
Response 

3.2. Discrete-time Model 

The discrete-time model comprises the following system of equations: 

y(,) = y(/-i)+AvK(/-i)^A-^r(/-i) 
{W(i) = -W(i-\).iy+X(i-\)-n„-e + kiY(i-\)-0 

(15) 

where 
X(i) is the number of infected hosts, 
Y(i) is the number of anti-worm instances in the network, and 
W{i) is the amount of bandwidth consumed by the worm and anti-worm activity. 
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The parameters of the model are described in the Table 2 below. 

Table 2. Model Parameters 

1 Parameter Formula Description 

a, a,=(N-X(i-l)-Y(i-l))/N 
Probability of hitting a vulnerable host at time 1 
i (not yet infected by the worm, nor the anti- 
worm) u S,=(\-W(i-\)/W^) Packet delivery probability 

r k,=X(i-\)fi Rate of sending attack packets by every unit of 1 
anti-worm at time ; 

\A ß,=(N-Y(i-\))/N 
Probability of hitting a vulnerable host or a host 1 
infected by the worm at time ' (a victim of the 
anti-worm) 

r, y,=X{i-\)lN Probability of hitting a host infected by the 1 
worm 

v Constant gain Proportional coefficient used in the anti-worm 1 
generation rate control law 

"" 
Constant gain 

Rate of sending attack packets by every unit of 1 
the worm 

e Constant gain 
Amount   of   consumed   bandwidth   due   to 1 
transmitting of one attack packet of a worm or 
an anti-worm 

V Constant gain 
Coefficient determining the rate of decreasing 1 
of the  amount  of consumed  bandwidth   (in 
natural motion) 

N Constant gain Total number of susceptible hosts in the 1 
network (before worm and anti-worm activity) 

w~ Constant gain Maximum available bandwidth 

1 Constant gain Rate of the anti-worm population decrease in 1 
natural motion 

As model (15) was developed, several reasonable assumptions were made and simplifications 
were introduced. First, the probabilities or,, /? and y, were approximated assuming an identical 
and independent distribution. We neglected network topology and infrastructure limitations. 
Also, for the sake of simplicity, we assumed that the worm and anti-worm have only one packet 
attack and utilize a QoS free transport protocol such as UDP. For an example of such a worm in 
real life, one can refer to the well-known SQL.Slammer worm. Moreover, we assumed that 
network natural activity is much smaller than the worm and anti-worm combined activity. These 
simplifications allowed us to use the linear law for packet delivery probability. While the linear 
formula may not capture network congestion phenomena in all phases, it is a good choice to 
consider the network bandwidth as a single value. 

We performed our simulation in MATLAB using the static parameters and initial values listed in 
Table 3. 
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Table 3. Model Static Parameters 

M 0.00005 

K 0.01 

e 0.5 
y> 0.02 
N 10000 

\ w„ 240 

\X{0) 200 

no) 10 

* 0.000001 

Figure 5 shows the consumed bandwidth as a percentage of maximum bandwidth, the number of 
infected hosts and the anti-worm propagation rate. One can see that anti-worm generation rate 
rapidly increases until the worm population drops down and then slowly decreases along with the 
worm population size. 
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Figure 5: Worm and Anti-worm Dynamics 
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The value of the obtained mathematical models is in the demonstrated ability to describe the 
interaction between the major variables describing the behavior of a network equipped with anti- 
worm defenses under the attack. Consequently, the model provides a basis for the development 
and validation of advanced feedback control mechanisms of the network defenses. 
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4.0   AUTOMATIC DETECTION/MITIGATION OF COMPUTER WORM ATTACKS 

A successful solution to computer/network security problem implies that a fully automatic 
defense mechanism emulating the active immune response be developed and deployed in the 
network. This can be achieved by understanding the complex phenomena of co-existence of 
adversarial self-replicating entities in the network, worm and anti-worm (virus and anti-virus) in 
conjunction with their effect of the network bandwidth. While any deployment of self-replicating 
software could be highly detrimental to the network, it is necessary to develop a technology for 
making the process of co-replication of worm and anti-worm observable and controllable. The 
critical features of the active immune response, mentioned earlier, must be implemented: 

• Distributed detection/identification mechanism 
• Synthesis of highly specialized defense agents on demand 
• Controlled self-replication of the defense agents 
• Efficient status assessment of the network 
• Negative feedback control assuring sustainable operation of the network 

This implies that the necessary components of the immune-like defense mechanism are: 
• Highly efficient IDS deployed in a number of specially designated machines distributed 

within the network for the detection and correlation of instances of self-replication 
behavior of software indicative of computer worm propagation. 

• A special station(s) synthesizing on demand anti-worm entities that could be released in 
the network upon the detection and identification of the attacker. These entities must be 
strictly specialized thus targeting only the designated malicious processes. The 
propagation mechanism of the anti-worm should be equivalent to the one of the most 
efficient worms, or will utilize the list of IPs of the network. The replication 
(propagation) rate of the anti-worm entities must be subjected to real-time centralized 
control. A technology facilitating a controlled time-varying rate of self-replication of the 
anti-worm is proposed. 

• A statistical selective sampling procedure is proposed for the estimation of the number of 
hosts in the network affected by the worm and anti-worm by periodic scanning a 
relatively small group of randomly chosen hosts. This approach, minimizing the impact 
on the network bandwidth, is suggested as the means for the generation of a feedback 
signal that is crucial for the implementation of any feedback control mechanism. 

• Finally, an advanced control law relating the propagation rate of the anti-worm to the 
feedback information has to be established in full compliance with modern control 
theory. 

The principle of operation of an automatic defense mechanism capable of controlled deployment 
of a self-replicating anti-worm in response to an information attack on a computer network by 
self-replicating software is shown in Figure 6. This figure depicts malicious software deployed 
from an attacker's computer as it propagates within the network. Eventually, it is detected by one 
of the specialized attack detection/identification stations dispersed within the network that 
automatically extracts a binary signature of the detected malicious software and transmits it to 
the Control station. Then a specialized anti-worm (self-replicating patch) is deployed from the 
control station and also propagates through the network disinfecting and immunizing individual 
hosts. Based upon the topology of infccted/uninfectcd hosts the Control station will ether send 
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self-replicating anti-worm  software  to prevent  the propagation of the worm  or logically 
disconnect hosts from the network. 
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Figure 6:  Principle of Operation of Automatic Security System for a Computer Network 

The propagation rate of the anti-worm is time-dependent and is defined by a specially designed 
control law. The anti-worm is targeting the malicious software specified by a binary signature 
loaded in its targeting mechanism. The network computers (routers) are subjected to periodic 
selective scanning in order to estimate the number of infected and disinfected (immunized) hosts. 
The control law converts the feedback information on the overall status of a computer network 
subjected to both the information attack and the effects of the self-replicating anti-worm into 
numerical values of some parameters governing the propagation rate of the anti-worm. This 
control law is synthesized on the basis of nonlinear differential equations describing complex 
interplay between the number of infected hosts, number of operating ami-worm units, and the 
available resources of the network - the remaining capacity of its communication channels. 

4.1. Attack Detection/Identification 

Attack detection/identification stations are interconnected host-based worm detection systems 
dispersed within the computer network. Such a station is visualized as a cluster of independent 
virtual computers, vulnerable to attacks, being run on the same physical host. In a way, the 
virtual computers of the detection stations form a "network within the network" and exchange 
security related information that is important for reliable detection of the attack and identification 
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of the attacker. Each virtual computer of the station is equipped with the Dynamic Code 
Analyzer (DCA) capable of detecting attempted self-replication [56]. When attacked by a 
computer worm or virus, the virtual computer of the detection station executes the instructions of 
the malicious software including those resulting in its self-replication. It is commonly known that 
most malicious software self-replicates in order to maximize the severity of the attack, and this 
functionality typically invokes specific sequences (patterns) of system calls. The DCA monitors 
system calls and is capable of detecting the specific patterns of system calls indicative of self- 
replication. Upon detection of the attempted self-replication, the DCA suspends the process in 
question, generates a specific warning identifying the detected specific self-replication pattern 
and transmits it to all virtual machines of the detection station. While the system calls-based IDS 
are known to have a high rate of false positives, no further action is taken until the same alarm is 
generated by another virtual machine, thereby drastically reducing the probability of false 
alarms. When the alarm is substantiated by a warning from an additional source, a special 
procedure deployed at one of the detection stations, capable of extraction of the binary signature 
of the troublesome software is activated. The feasibility and general algorithms of such 
procedures are discussed by several authors [28], [29], [30], [31]. The extracted binary signature 
will serve as an ID of the worm/virus attacking the network and it will be transmitted to the 
control station. 

One of the following sections of this Report present the authors' research aimed at the 
enhancement of the IDs technology recommended for this application. 

4.2. Generation of the Feedback Signal 

A success!ully implemented feedback signal is crucial for any self-regulating system. In our 
situation the feedback signal represents the number of infected and disinfected hosts that varies 
as the attack and countermeasurcs progress. While scanning of the individual hosts of the entire 
network in a worm-like fashion is clearly unacceptable, a selective sampling (scanning) approach 
commonly utilized in quality control is adopted, and then the resultant problem is solved using 
statistical inference. 

For a given population size and fixed sample size this problem is usually solved under some 
assumptions about the underlying statistical distribution of the sample that is expected to be 
geometric. In reality, one does not know the population size, i.e. the total number of hosts, since 
at any time computers may be arbitrarily connected and disconnected from the network. As a 
result, the geometric distribution assumption is not truly applicable. However, if the number of 
susceptible hosts is sufficiently large, we do not have to know the exact number of vulnerable 
computers to apply the binominal distribution. Presumably, the share of infected computers in a 
fixed size sample confirms to binominal distribution with the mean value equal to the share of 
infected computers in the whole population. In order to use statistical inference techniques to 
estimate the mean value one has to ensure that the sample is identically and independently 
distributed. In other words, the source must be stationary during the sample selecting process that 
could be assured by two quite realistic assumptions, (1) hosts whose status is polled are chosen 
uniform randomly, and (2) during the scanning session the number of vulnerable hosts and 
number of infected machines does not change. 
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The independence requirement can be achieved using a random number generator. The identical 
property can be satisfied only if computers would be scanned pseudo simultaneously, i.e. by a 
very short duration scanning session. 

Under the assumption of binominal distribution, the percentage of infected computers is 
estimated as a proportion parameter. The required statistical significance of the estimate could be 
assured by the choice of the sample size. While a closed-form solution for the exact confidence 
interval by the acceptance region inversion does not exist, approximate solutions for a 
confidence interval based on Central-Limit Theorem could be considered. Then a Clopper- 
Pearson (exact) confidence interval for the estimate that provides an assigned coverage 
probability with any specified precision can be found via standard numerical methods. Its 
computation results in an iterative process leading in the definition of the minimum sample size 
providing a specified relative error (statistical significance) of the estimate. Ultimately, this 
provides a theoretical foundation for the utilization of selective scanning as the means of 
establishing a dependable feedback representing the dynamics of the worm/anti-worm interaction 
process in the network without a significant impact on the network bandwidth. 

The developed approach to continuous network status assessment is given in the next section of 
this report. 

4.3. The Control Station 

A control station is a computer equipped with software for generation and controlled 
dissemination on demand of a specialized anti-worm (anti-virus). An anti-worm is an already 
existing software entity that consists of a propagation engine, a targeting mechanism and a 
payload, see Figure 7. The propagation engine implements the most efficient propagation 
techniques of computer worms that imply scanning of the network in the search of susceptible 
hosts and transmitting the appropriate code to such hosts [30], [31]. However, unlike the 
common worm intended to maximize the effect on the network, the propagation rate of the anti- 
worm will be controlled according to a control law that takes into account the number of infected 
hosts and the availability of the network bandwidth. 
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Figure 7: Composition of an Anti-worm 

This could be achieved by an inherited replication counter that controls the allowable number of 
generations. K . and the allowable number of offsprings in each generation, L, as the anti-worm 
propagates. The K and L numbers are time-dependent and are defined by the control law and 
communicated to the control station. It could be seen that having such a finite and controllable 
\K,L) combination results in the limited life span of the anti-worm so that it will cease to exist 

as the attacking worm is defeated, and due to the properly chosen control law does not congest 
the network. 

The standard payload of the worm implements functions resulting in the neutralization of a worm 
if the host is infected and/or immunization of the host by making it immune to the worm. Both 
functions could only be performed in response to a particular worm that is uniquely identifiable 
by its binary signature and detected by the standard targeting mechanism operating in the 
traditional anti-virus software fashion. This could be achieved by loading the binary signature of 
the propagating worm extracted by one of the detection stations and transmitted to the control 
station. 

The anti-worm is designed to propagate in the same environment utilizing some of the same 
vulnerabilities exploited by worms. This strategy is applicable to anti-worm propagation in 
vulnerable systems, as well as systems that are already infected with the worm. Certain worm 
propagation scenarios may include a self-patching worm behavior that would prevent an anti- 
worm from replicating onto already infected machines. This situation may be resolved by 
implementing such methods as establishing a dedicated communication channel for anti-worm 
propagation, or disabling self-patching at the system level by utilizing a run-time modification 
prevention approach. While such counter-measures are less favorable in the global net 
environment due to local system modification requirements, they would further enhance the 
functionality of the proposed active immune response system. 

27 



It should be noted that this anti-worm propagation approach is the most conservative and the 
most generic. Technically, anti-worm propagation strategy can take full advantage of the friendly 
system environment and utilize to known list of IP addresses of the computers within a particular 
network. Although this would constitute a step away from the "active immune-type response", 
such an approach seems to be practical in some application problems. 

In an effort to speed the recovery of an infected network, the various control stations will also 
have control of administratively close routers allowing for quarantine and isolation of the 
infected portions of the network. If the infected portions of the network can be isolated quickly, 
not only will further spread of the worm be reduced, but the transmission of the anti-worm will 
be more successful as networking resources will be worm free and available. In addition, 
knowledge of the infection concentration will aid in guiding the anti-worm propagation. 

Several ways of disconnecting or isolating hosts by the control station could be investigated. 
Possibilities include disconnecting the host from the network by disabling its various network 
interfaces, altering network address resolution tables, or by dynamically changing host routing 
information and reconfiguration of network routers and switches. Some of these techniques are 
rather simple to implement but may not offer much flexibility in the recovery period while others 
can be quite complex, involving networking hardware from several vendors with very different 
configuration methods. 

The following are some conditions assuring the feasibility of the proposed anti-worm generation 
technology: 

1. The generator of anti-worms must be dependably protected from attacks. 

2. Potentially, the anti-worm mechanism can be exploited by real warm (as AIDS does). In 
that case the immune system is reoriented to generate the warms. This reality places high 
emphasis of advanced encryption. 

3. A special attention should be paid to providing distinctive attributes for anti-worms 
enabling the system to recognize anti-worms as such. 

4. There are two ways of software distribution: remote one by download and local - by 
setup. The advantages of the local way of anti-worm distribution (more difficult to 
compromise) must be assessed against the remote distribution (more consistent with the 
concept of active immune-type response) must be analyzed. Unfortunately, such a study 
has not been performed under this project. 

4.4. The Control Law 

The control law is responsible for the stability and efficient operation of the described system. It 
defines a relationship between the control parameters of the anti-worm {KyL\ responsible for 
the rate of its propagation, and the feedback information representing the severity of the attack, 
namely, the estimated number of infected hosts, disinfected hosts and the available network 
bandwidth. The control law is formulated on the basis of the mathematical model of the active 
network response featured in Section 3 of this Report. After the expansion, linearization and 
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conversion into the discrete-time domain of equations (10, 11), this model could be written in a 
traditional discrete-time state-variable notation as 

*(« + !) = A 

~w(n) 

x(n) 

.An). 
+ B j 

"*(«)' 

.«»). 
= -F 

~w(n)~\ 

_y{„)\ 

(16) 

where 
w(w), x(n) and v(") are state variables of the active network response that 

correspondingly represent the increment of the network bandwidth, number of infected hosts, 
and number of active (i.e. engaged in scanning activities) anti-worm units at particular moments 
of discrete time, n = 1,2,... 

K(n) and L(n) are the control efforts of the active network response representing the 
allowable number of generations and the allowable number of offsprings in each generation of 
the anti-worm, 

A is a matrix representing linearized complex interrelationships between the number of 
infected hosts, number of active anti-worm units and the network bandwidth, 

B is a matrix representing linearized effects of the control parameters of the anti-worm on 
the number of infected hosts, number of active anti-worm units and the network bandwidth, 

F = F(n) is a matrix of the state-variable controller, 

A combination of the matrix-vector equations written above results in the discrete-time 
description of the closed-loop system that effectively is the equation of natural motion of an 
inertial system 

(17) 

It is known that the steady-state regime of a dynamic system described by such an equation is 

dependent on the eigenvalues of matrix d -A- BF and such a system is stable, i.e. all 

eigenvalues of matrix ^    are located in the left-hand half of the complex plane, is 
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Therefore, it could be seen that for arbitrary matrix A and matrix B appropriate selection of the 
controller matrix F would assure that the network engaged in active response returns to its status 
preceding the attack. Moreover, the selection of specific eigenvalues of matrix ACL utilizing 
eigenvalue assignment techniques common in modern control theory enables the designer to 
manipulate the duration of the entire attack mitigation process. 
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The authors are aware of the fact that the above situation is overly optimistic due to the fact that 
matrix A and matrix B are poorly known and their values are time-dependent due to changing 
properties of the network and moving point of linearization. It is proposed to estimate these 
matrices experimentally by periodic deployment of a specially designed short-lived worm. The 
poor knowledge of matrices A and B and their time-dependence could be addressed by the 
application of a model-reference (adaptive) control law that results in a time-dependent 
controller matrix F = F(n). The resultant control system configuration is depicted in Figure 8. 

Figure 8 shows a reference model (a simulation module) representing the required closed-loop 
dynamics of the active response assured by the selection of its fundamental matrix Ast, 

~-->(n + !)~ \(nf 
gt(n+l) = AM zz(n) 

_zt(n + l)_ _!>(»)_ 

(19) 

It could be seen that the state variable of the active response, x(n), representing the number of 
infected hosts and the corresponding state variable of the reference model, -,(«), have the same 

initial conditions, x(0) = z](0) = x0 equal to the initial number of infected hosts estimated at the 
detection of the attack. 
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Figure 8: Adaptive Control of the Active Network Response 
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The error vector, 

%(») (20) 

is calculated as a discrepancy between corresponding states of the reference model and active 
response and provides the input information for the adaptation block implementing the 
adaptation law. This law implements one of several techniques described in [50] resulting in 
perfect asymptotic adaptation that implies that all three states of the active immune response, the 
number of infected hosts, the number of active anti-worm units, and the increment of the 
network bandwidth will converge to zero regardless of initial conditions, i.e. v,,. 

There are several approaches leading to the definition of the control law. The hyperstability and 
positivity approach [50], developed in model reference adaptive control is based on the 
linearization of the mathematical model of the network response, design of a state-variable 
controller with adjustable parameters, and the utilization of adaptation laws to assure the 
conformance of the parameters of the controller to the immediate operational regime of the 
inherently nonlinear, time-varying system. The method based on Liapunov stability conditions 
deals directly with the nonlinear mathematical model of the controlled process and also leads to 
the synthesis of a model-reference adaptive controller [50]. The model reference controllers have 
been successfully designed and verified by the application to the nonlinear mathematical model 
of the network response implemented in MATLAB. 

It should be noted that the development and deployment of the control technology described 
herein constitutes a large-scale task that in terms of the required funding and volume of work 
goes far beyond the scope of this project. It has been proposed to the AFOSR as the next stage of 
this research. 
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5.0   ENHANCED SYSTEM CALL DOMAIN IDS 

Major threats, well recognized by government, private institutions and individual users, are 
stemming primarily from self-proliferating malicious software such as network worms. Network 
worms perpetrating remote code execution attack, such as buffer overflow, stack overflow, heap 
overflow and etc, have two vital components, propagation engine (shell code) and an exploit. 
The shell code being a necessary part of the propagation engine is executed by the vulnerable 
process just after the exploit vector rerouted the control flow. The shell code creates specific 
conditions which are utilized by the attacking worm to complete propagation session. Hence, 
every network worm performing remote code execution attack, utilizes particular type of 
propagation engine and a corresponding shell code in every attack to replicate into the victim 
machine. 

On the other hand, adversaries usually utilize standard propagation engines along with available 
exploits of the selected vulnerability. It could be explained by the fact that reverse-engineering of 
die services, determining vulnerability, developing the exploit and producing specific shell code 
(propagation engine) requires special experience and knowledge which is possessed by certain 
small community of people. The biggest part of the worms is written by so-called "script- 
kiddies" [1], who utilize available exploits with standard shell codes as buffers in the attack 
packets and implement their own payload what results in the new instances of the worm. 

Moreover, a worm family may spawn many strains, so-called versions of the original worms. 
These strains are created in order to avoid matching to existing binary signatures of known anti- 
virus databases and to prolong the life-cycle of the worm. While recompiling the original worm 
code into novel strains, the adversaries change image name, synchronization object name, 
registry records and employ equivalent code modification techniques. However, according to our 
experience, versions of one worm family tend to share one or two propagation engines. For 
instance, W32.Sasser worm has seven known strains, while W32.Padobot worm has 29 strains 
and in spite of their mutations they utilize only two propagation engines. This is a good 
demonstration of the fact that the source code of the worms could be easily subjected to change 
to break known simple signatures, but adversaries hardly change shell coder buffer since it 
requires to program in specific, base-independent style1 what involves much more efforts. Even 
if and an effort is made to change the shell code (propagation engine) to make it binary different, 
one has to preserve the initial system call pattern to achieve the propagation effect. 

As a result, most of the network worms share the same trivial propagation engines and shell 
codes. To achieve the propagation effect, the shell code must invoke system calls through API 
functions to utilize operation system (OS) resources. Consequently, shell codes of the worms 
having the same propagation engine have the same realization in system call domain. Therefore, 

It requires computing delta offset, searching for entry address of API functions in DLLs and performing variable 

address alignment. 
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the task of detecting worms can be narrowed down to recognizing the standard propagation 
engines utilizing the system call signatures. 

Based on highly successful dynamic code analyzer (DCA) concepts [2], the authors developed 
and evaluated Propagation Engine Detector (PED) system capable of detecting attacks 
perpetrated by network worms. This system detects the worm shell code activity performed by a 
process during the attack session. Moreover, PED recognizes the type of propagation engine 
employed by the worm exploiting the process. The developed PED system utilizes Colored Petri 
nets (CP-net) to trace in parallel interrelated chains of system calls issued by the monitored 
process to recognize high level API functions invoked by the process. The detected high level 
functions in combination are analyzed to determine how the process creates and manipulates 
operation system objects. Such information is finally processed by CP-net to detect if the process 
activity exhibits the functionality of the particular type of propagation engine. 

5.1. Background and Related Work 

System call-based Intrusion Detection Systems (IDS) utilize two main approaches, misuse 
detection and anomaly detection. Misuse detection or so-called signature-based detection 
systems employ known traces of system calls to detect malicious activity. This approach ensures 
high level of accuracy, but fails to detect previously unknown attacks. Anomaly-based detection 
utilizes models of normal behavior of legitimate and especially privileged processes with respect 
to invoked system calls. In the detection mode, these systems check consistency between 
invoked system calls and the profile of normalcy for a given process. Anomaly-based IDS are 
able to detect unknown (new) attacks, but suffer from high rate of false positives. 

Up to now a number of anomaly-based as well as misuse-based IDS have been proposed. The 
systems could trace merely order of system call execution. The efficiency could be further 
enhanced by analyzing arguments of system calls. 

Anomaly detection using system call without attributes 

Forrest at al. [57] proposed to build an n-gram model of normal activity comprising possible 
sequences of system calls with n elements. To build such a model, they monitor process behavior 
in both synthetic and real environments. During the detection phase, the IDS evaluate the 
hamming distance between the current sequence of system calls and the normalcy model. Then, 
if the distance is greater than a specified threshold, the sequence is attributed to anomaly. 

Durante, Pictro and Mancini [58] model the application behavior as a Finite State Machine 
(FSM), which accepts legitimate system call execution sessions caused by particular user 
commands. This approach requires comprehensive learning with expert who will trigger all 
possible commands of the application. If FSM does not accept the sequence of system calls 
invoked after given command, intrusion alarm will be triggered. This method is not applicable 
for a process which does not have user interface such as native services being most frequently 
chosen as targets for attacks. 

Stolfo, Eskin and Lee [59] utilize call execution trees to derive a prediction model trough Sparse 
Markov Transducers. They also suggest using dynamic context-dependent window of contiguous 
system  calls  invoked  by  the process.  During  the  detection  phase  they  check  predictive 
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(conditional) probability of the given subsequence against some threshold, then, if probability is 
less than threshold, the subsequence is declared anomalous. 

Anomaly-based systems which do not explore system call attributes usually show weak 
performance, since lots of critical information is discarded. For instance, network worm shell 
code may start command interpreter through "CreateProcess" function with inputs and outputs 
associated with a socket, what could be determined only by inspecting system call attributes. 
Moreover, without system call attribute data, it is impossible to relate system calls to some 
functional chains that is necessary to trace an OS objects manipulation session. 

Anomaly detection using system call attributes 

Liu and Martin [60] use system calls traces for detecting insider threats when a privileged user 
tries to perform a malicious activity. They utilize three different feature spaces to build a model 
of normalcy: n-grams of system call names, histograms of system call ID over fixed window and 
system calls with attributes. Each system call along with attributes is mapped onto its binary 
teature space so that dimensions are assigned to distinct values of every parameter. They use 
minimum hamming distance for n-gram models and system calls attributes models to detect 
anomalous records. 

Tandon and Chan [61] use rule-learning algorithm to derive a model of benign behavior for 
every process. They take into account all arguments for individual system calls or bag of system 
calls (contiguous sequence) and build a set of specific rules. Feature vector for a single system 
call consists of such qualitative elements as: ID of system call, arguments, returned value and 
error status. Feature vector for a bag of system calls is composed of concatenated feature vectors 
of corresponding system calls from the bag. During the detection phase, feature vectors, 
inconsistent with the rules, are considered as anomalous with some degree of certainty. 

Xu at al. [62], in contrast, analyze only critical system calls, which are vital for gaining access or 
control to the privileged target system. Their method also generates a pre-defined set of rules 
constituting the profile of normal behavior. Authors group system calls and assign level of 
danger to every system call. Nevertheless, they do not cohere system calls in functional chains 
what results in subjective information failing to perform reliable detection. 

Kruegel at al. [63] suggests using arguments of file management system calls which represent 
file names to be manipulated or accessed. Authors depict four models of normal strings of file 
name arguments: string length, character distribution, string structure and token structure. 
Having these four levels of model abstraction, the system based on this approach is able to detect 
malicious activity in terms of abnormal argument strings. Since the method is focused only on 
file manipulation it would not be able to detect "Executable Download and Execute" shell code 
in the case when the name of the worm image is consistent with the string models. 

It is our observation that the limitation of n-gram and frequency-based models lies in specifics of 
input data. These methods disregard functional relation between system calls and trace only 
contiguous system calls which may not be related by any functionality. This seems to be the 
main reason of high false positive rate reported by the authors. The problem with attribute 
models is that comprehensive learning may require large amount of learning space to contain all 
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distinct records of models for all system calls for all processes. In addition, these models do not 
classify and group system calls to functional blocks, and the testing may result in high look-up 
time. In contrast, the success of the earlier mentioned DC A approach could be credited to the full 
utilization of attributes of system calls enabling the authors to reconstruct the "gene of self- 
replication" on a block-by-block basis [2]. 

Misuse detection 

Bernanshi, Gabrielli, Mancini [64] classify system calls with respect to the feasibility of utilizing 
individual system calls in compromising OS security and integrity. The IDS also contains the 
database of access control rules defined in the system call domain. Thus, the efficiency of the 
system depends on completeness of the rule base for particular process. For instance, the IDS 
will block any attempt to run an executable which is never executed by the mediated process. 
While the authors mention the necessity of chaining system calls in order to reveal dangerous 
calls combinations, they do not provide any mechanism for assembling system calls into 
functional blocks. Hence, the system detects malicious activity only based on single system call 
misuse, what makes the security decision subjective and less reliable. 

Kahg and Fuller [65] employ system call frequency distribution over fixed length window as in 
the input feature space and apply machine learning algorithms to make classification between 
malicious and normal system call traces. Again, the authors do not take into account high level 
functionality and system call semantics. 

Sekar and Bowen [66] also developed high-level specification language to profile system calls 
usage with arguments for every process. Sequences of system calls which conflict with the rules 
of the language arc treated as anomalous. While the authors trace sequences of calls with respect 
to attributes, they do not deduce explicitly OS object manipulation to reveal semantics of the 
system call chains what seems to be necessary to recognize a propagation engine. 

In summary, some authors propose to retrieve quantative information from system call issuance 
data: others - to pre-classify system calls to explore categorical information. While such 
information does not provide enough knowledge to detect malicious activity with high 
confidence, there were a few attempts [64, 66] to deduce semantic information on the level of 
primitive functional blocks. However, recognizing merely primitive functional blocks would not 
provide complete picture of the process behavior. 

We believe that without tracing the entire functionally of the shell code by restoring the complete 
procedure of OS object manipulation confident detection decisions cannot be reached. To 
address the shortcomings of the referenced approaches, we propose to reconstruct the entire 
procedure of OS object manipulation revealing particular high level operations and finally 
recognizing semantically expressed high level activity as a shell code algorithm. The proposed 
PED system implicitly conducts all the recognition steps while simulating the dedicated Colored 
Petri net. 

5.2. Analysis of Propagation Engine Utilization 

The largest library of exploits hosted by Metasploit Project [67] provides 18 possible shell codes 
for Windows OS, which could be attached to the exploit vector and potentially employed to 
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compromise security of a susceptible host. Shell codes 1, 2, 3, 6 and 7 could be effectively 
utilized as a part of the propagation engine to achieve a worm proliferation into the target host. 
However, according to our observations, adversaries inherently employ limited set of particular 
types of propagation engines in the network worms. 

Table 4. Standard Shell Codes Available in Metasploit Project 

1 Bind Shell 
2 Reverse Shell 
3 Bind DLL Inject 
4 Bind Meterpretcr DLL Inject 
5 Bind VNC Server DLL Inject 
6 Executable Download and Execute 
7 Execute Command 
8 Execute net user /ADD 
9 PassiveX ActiveX Inject Meterpreter Pay load 
10 PassiveX ActiveX Inject VNC Server Payload 
11 PassiveX ActiveX Injection Payload 

1 12 Recv Tag Findsock Meterpreter 
13 Recv Tag Findsock Shell 
14 Recv Tag Findsock VNC Inject 
15 Reverse DLL Inject 
16 Reverse Meterpreter DLL Inject 
17 Reverse Ordinal VNC Server Inject 
18 Reverse VNC Server Inject 

To estimate the tendency of propagation engine utilization, we investigated 25 recent network 
worm families including: Sasser, Welchia, Blaster, Slammer and Mytob. Figure 9 depicts the 
propagation engine distribution among the studied worms. Worm propagation engines were 
determined based on Symantec virus data base as well as reverse engineering particular strains of 
the worms. It could be observed that more than 60% of the worms employ "Bind shelf' engine, 
while "Reverse shell" and "Executable Download and Execute" (ED&E) propagation engines 
art shared by 30% of the worms. Finally, less than 10% of the worms utilize other types of the 
engines such as thread injection, remote command execution and etc. 

The first three engines (Figure 9) are dominantly employed in the worms due to the simplicity of 
their utilization in the propagation session. 
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Figure 9: Propagation Engine Utilization 

Table 5 explains the high level operation of these engines. The first row of the table summarizes 
the functionality of the shell code of the propagation engines. The second row reviews the 
activity of the rest of the propagation engine which is not performed in the context of the 
exploited process, but by the legitimate means of OS. 

Table 5. Propagation Engine Operation 

Bind shell Reverse Shell Executable 
download       and 
Execute (ED&E) 

Shell          code 
(executed by the 
exploited 
process) 

Open a port 
Accept connection 
Create      a      command 
interpreter   process   that 
will listen on the port for 
incoming commands. 
(This    will    allow    an 
attacker to issue remote 
commands on an infected 
computer). 

Open a port 
Connect to the attacker 
Create        a        command 
interpreter process that will 
listen    on    the    port    for 
incoming commands. 
(This will allow an attacker 
to issue remote commands 
on an infected computer). 

Connect    to    the 1 
server     in     the 
attacker host. 
Download       the 
worm image 
Execute the worm 
image. 

The rest of the 
engine 
(performed 
legitimately   by 
OS) 

Transmit   commands   to 
the victim host and make 
it   to   download   worm 
image and execute it. For 
instance through TFTP. 

Transmit commands to the 
victim host and make it to 
download worm image and 
execute    it.    For    instance 
through TFTP. 
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The "Reverse Sheir engine is very similar to the "Bind Shell". However, in order to avoid 
inbound firewall, the shell code makes victim to connect to the attacker, instead of waiting for 
connection from the attacker. 

The ED&E engine performs the entire propagation in the shell code without post-activity as it is 
performed in first two engines. It simply creates a socket, establishes a connection to the attacker 
and retrieves a copy of the worm through the established channel. The shell code usually uses 
facility of high level protocols such as HTTP to download a worm, but sometimes it downloads 
the worm directly through the channel using merely TCP. 

The above considerations indicate that different worms form different families tend to share the 
same propagation engines. And the number of totally different types of propagation engine is 
limited. At the first stage of the propagation session, the worm shell code is executed by the 
target, the vulnerable process. To achieve propagation effect, the shell code has to utilize system 
resources trough utilizing API functions. As a result, each type of shell code would have its own 
system call execution pattern. Hence, one can detect and recognize particular system call 
signatures of the propagation engines. Therefore, detecting worm attacks can be narrowed down 
to recognizing the propagation engines based on the system calls signature. 

5.3. Recognition of the Propagation Engine 

As it was established above, in the first stage of propagation, the shell code invokes high level 
API functions. For instance, consider the operation of the shell code of the "Bind Shell" engine 
on the subsystem (API) level. It was noted above that the "Bind Shell" engine has quite primitive 
shell code to be executed by compromised process and this code invokes several high level APIs. 
One of the realizations of such a shell code for Windows OS is presented in Table 6. It could be 
seen that socket object is created using Socket API than it is put on listening state through Listen 
function and after accepting a connection the command interpreter ("cmd.exe") is started by 
CreateFile function with input and output set to the socket handle. 

Table 6. Bind Shell Engine High Level Implementation 

API (function) 
1 s=socket(...) 
2 bind(s) 
3 listen(s) 

4 sl=accept(s) 

5 CreateProcess("cmd.exe*\. . > 

Parameters 
_outs 

in sockets 
in sockets 

in socket=s 
_outsi 

in pszImageName="cmd.exe" 
_in 
STARTVPINFO.hStdInput=s 1 

in 
STARTUPINFO.hStdOutput=s 1 

Description 
Opens a socket 
Bind the socket 
Put the  socket  to  listen 
state 
Accept a connection to the 
socket 
Start command interpreter 
with standard output and 
input   being   tied   to   the 
connected socket 

A propagation engine may have several realizations with respect to high level functions. 
However, according to our experience, such high level variations tend to preserve the same 
implementation with respect to system calls. For instance, bind shell engine may be realized 
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through anonymous pipes as well as through API's listed in Table 6. However, both high level 
realizations get translated into the same sequence of system calls. Hence, for the sake of 
reliability, propagation engines should be recognized at the system call level. 

In order to recognize the shell code type, one has to model shell code activity in system call 
domain. System calls by themselves do not provide a complete picture of the process activity, 
however system calls create and manipulate objects by means of handles and other system 
descriptors. Hence, we are more concerned of what shell code does with OS objects. For instance 
in the realization presented in Table 6, the "Bind Shell" engine creates an OS object named 
socket and puts it in the listening state to accept a connection. Thus, in case of "Bind Shell" 
engine, we have to trace socket manipulation in order to detect the malicious functionality. To 
track object manipulation we have to relate system calls by object handles. In other words, the 
model has to follow inheritance of the object handles used by system calls and reveal chains of 
system calls. However, the shell code may have several chains not related to each other until 
some specific moment. Hence, the model must have a memory and an ability to trace system call 
chains in parallel. Therefore, it is required to provide parallelism, memory and inheritance, what 
could be addressed by utilizing Petri Nets [68]. 

Since system calls are related by the handle value. Colored Petri Net (CP-net) must be utilized to 
formally describe the manifestation of a propagation engine in the system call domain. CP-nets 
are able to model particular activity in terms of actions (transitions) and states (places) at any 
desired level of abstraction thus providing the necessary generalization. Such a general model 
would be able to recognize the type of propagation engine in spite of possible code modifications 
or platform variances. Moreover, due to the parallel structure of the Petri nets the model 
realization would be compact causing low computational overhead. 

The CP-net could formally be presented as a tuple [68]: 

CPN = (C,P,T.A.N,F,G,EJ) (21) 

where: C - color set, P - set of places, T - set of transitions, A - set of arcs and etc. 

The color sets constitute OS object handles employed by system calls and other system 
descriptors such as file names. 

To address the specifics of our problem, we had to extend the original formalism of the CP-net in 
the way that set of places consists of tree disjoint dedicated subsets: 

P = SvBvR (22) 

where S - set of system calls places, B - set of functional blocks of system calls, R - set of 
recognition nodes. Thus, each place of the set S corresponds to particular system call and its 
tokens are defined as ordered pair of certain attributes of the executed system call. Places of the 
set B contain tokens representing successful execution of corresponding functional block. 
Recognition places from R represent successful recognition of the propagation engine. 

Another extension we introduced into the classical CP-net is the inclusion of inlet and outlet 
transitions. The inlet transitions correspond to the system call execution which results in firing a 
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new token to the corresponding place. The outlet transitions represent handle elimination, for 
instance through NtClose system call, which results on destroying token from the corresponding 
place usually belonging to the set S. Ordinary, transitions assemble system calls into chains 
(functional blocks) represented by places from the set B. Hence, each token represent an instance 
of execution of particular chain of system calls interconnected by object handles, pointers, etc. 

In the context of one process different objects cannot share the same handle value. Hence the 
CP-net is free of conflicts what significantly simplifies implementation since we do not have to 
carry out conflict resolution policy. 

Figure 10 shows a reduced version CP-net for the ''Bind sheir propagation engine. The set of 
places P=SuBuR of the full version of CP-net is defined in the following way: 

S = 

NtCreateProcess|NtCreateProcessEx, 

NtCreateFile|NtOpenFile 
NtWriteFile,NtWrtieVirtualMcmory, 

NtDeviceIOControl,NtClose 

(23) 

B = 
["FileSection'V'FileSectionProcess"] 

"SocketOpen'V'ShellOpen" 
(24) 

R = {"BindShell"} (25) 

The network has a recognition node which represents an instance of "Bind Sheir. Due to space 
limitations, the Petri network is depicted without token outlet nodes which reflect object 
elimination through NtClose system call. Moreover, the network misses several alternative 
(undocumented) system calls which act the same as the original ones. For instance 
NtCreateProcessEx is functionally identical to NtCreateProcess, but has different entry point 
address. The prototype IDS employs full version of the Petri net with all necessary components 
included. 
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Figure 10: CP-net for Bind Shell Propagation Engine 

The CP-net in Figure 10 has two color sets (types). The former type (H) is a handle and its 
variables represent object handles. The later color set (S) is a string which describes names of the 
files. Color and variable declarations listed in Figure 10 are written using syntax of CPN markup 
language [68]. Also, the network has four inlet transitions: NtCreateSection, NtCreateFile, 
NtCreateProcess and NtWriteVirtualMemory. These transitions are enabled at the moment of 
successful execution of the corresponding system calls. The outgoing arcs of the system call 
transitions are provided with inscriptions which define token structure and variable initialization. 
For instance, when NtCreateProcess system call is invoked, the corresponding transition is 
enabled and fires a token which constitutes an ordered pair of two handles: handle of the process 
(input parameter) and the section handle (output parameter). There are also ordinary transitions 
such as "Open file and create section", which are enabled with particular events such as 
execution of the related chain of system calls. We used complex arc expressions to minimize 
structure of the network. For instance, expression of the ingoing arc to "Shell open" place checks 
if the file name contains the "cmd.exe" string, and if it does the network fires file handle as a 
token to the place, otherwise it does not put anything. 

The transition NtCreateFile is enabled if the corresponding system call has been executed. One 
can see that the token can be fired to one of the two places depending on the result of outgoing 
arc expressions with FileName parameter. If the file name contains "\Dcvice\Afd\Endpoint" 
string, then it means that the OS opens an instance of the AFD.sys driver which abstractly 
emulates a socket object. In fact, Socket function from WS2_32.dll invokes CreateFile function 
to open the driver instance and the handle of the driver will be ultimately employed as a handle 
of the socket object. Hence, in the Petri net a token pair of the handle is added to the "Socket 
open" place. This means that socket is created and is ready to be bound to a process. 
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The system calls NtCreateSection, NtCreateFile with "cmd.exe" and NtCreateProcess simply 
perform necessary steps for starting "cmd.exe" process. We should point out, that only properly 
related system calls result in transition fire. Hence, transition "Open file and create section" is 
enabled if NtCreateSection system call have file handle being equal to the handle of the opened 
"cmd.exe" file. Therefore, this transition fires section handle as a handle token to "File_Section" 
place only if ingoing tokens match each other (values of hi variables are equal in both tokens). 
Place "File_Section_Process" corresponds to the state at which the address space of the process 
is allocated and Windows is ready to initiate the process. System call NtWhteVirtualMemmory 
maps CreateProcess parameters to the process address space. The transition "Bind socket to the 
process" is enabled if the input and output handles of the process equal to the handle of the 
socket what indicates binding the opened socket to the process. 

We intentionally omitted some minor system calls as transitions in the network. In particular, in 
the real network utilized in the prototype IDS, there is NtDeviceloControlFile transition (system 
call) located after "Socket (driver) open place''. This system call sends commands to the driver 
ordering it to put the socket on listen or accept state. Moreover, we did not include 
NtCreateThread and NtResumeThread transitions (system calls) which constitute final steps in 
the process creation and running. 

The CP-nct depicted in Figure 10 is not merely low level map of high level implementation of 
ihe "Bind Shell" engine. Since, according to our experiments, different realizations and 
modifications of the original engine arc detected by the same network, the Petri Net in Figure 10 
is a general signature of the particular type of the propagation engine 

Furthermore, we designed CP-nets for the shell codes of such propagation engines as ED&E and 
"Reverse shell". Parallel structure of Petri Nets allowed us to merge several networks of different 
engines into one general, multi-engine network. The simplified version of the general network is 
depicted in Figure 11. This network is able to recognize "Bind Shell", "Reverse Shell" as well as 
ED&E propagation engines. 

The multi-engine network has three recognition places which represent successful detection of 
the corresponding propagation engines. The part of the network which recognizes "Bind Shell" 
engine is structurally similar to the network depicted in Figure 10. However, file name (variable 
s) is delivered to the place "Executable started" what allows to recognize the bind shell engine if 
file name is "cmd.exe", or the second engine if the executed file was prior downloaded. 

The network also contains two major states "Executable started" and "File downloaded". 
"Executable started" corresponds to successful execution of CreateProcess API (kemel32.dll). 
"File download" could be achieved through the sequence of high level APIs (wininet.dll - 
InternetOpenURL, InternetReadFile, CreateFile, WriteFile), or through subsystem level 
implementation (kernel32.dll - Socket, Connect, Send, Recv, CreateFile, WriteFile). However, 
both high level realizations of "File download" functionality have the common implementation 
in system call level which involves NtDevicelOControlFile andNtWriteFile system calls. 

The general network is more compact due to the points of integration which arc the parts related 
to NtOpenFile and "Executable started" place. The node "Executable started" is shared as an 
input by the recognition places of the corresponding engines. Hence, the entire substructure of 
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the network (upper-left), which is involved in token delivery to the "Executable started" place, is 
shared and employed in recognizing of three separate engines. Such integration on the structural 
level significantly reduces size of the overall network. 
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Figure 11: General "Multi-Engine" CP-net 
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5.4. Experimental Evaluation 

In this section we evaluate the performance of the proposed approach. We designed a general 
CP-net capable of recognizing three propagation engines: ED&E, "Bind Shell" and "Reverse 
Shell" Moreover, we implemented prototype of Propagation Engine Detector (PED) based on 
the designed CP-net. PED monitors system calls of the processes and recognizes propagation 
activity as a shell code. 

Experimental setup 

The experiments were conducted in the virtual network testbed at Binghamton University [69]. 
The testbed. being scalable up to 2000 nodes, was configured for virtual network comprising 200 
victim hosts and one attacker host. The victim hosts were represented by virtual machines with 
vulnerable versions of Windows OS including the prototype PED. The attack was performed by 
a worm from the attacker host against each victim hosts resulting in worm propagation into the 
victim virtual machines. 

We experimented with 10 notable network worms presented in Table 7. Every worm has been 
reverse-engineered deeply up to the point of revealing the exploit vector and shell code buffers 
supposed to be sent as payload in the attack packets. Some of the worms (Francette, Welchia) 
have shell code buffer encrypted and decrypt it just before sending. Hence, in order to extract 
exploit and shell code buffers we had to utilize run-time debugger and TCP dump software to 
record and process attacking packets payload. While reverse-engineering is not a trivial task, we 
have spent even more efforts to extract exploit and shell code of the propagation engines of the 
worms. 

Having exploit and shell code buffers, we were able to incorporate them into a custom, 
educational worm which was specifically implemented for the experiments. The custom worm is 
completely observable and controllable and allows performing user specified attack scenarios. 
Every realization of the custom worm with various shell codes and exploits share the single 
payload which simply reports to the control server every propagation step: arrival, deployment, 
starting of the attack session and proliferation status. The custom worm also provides necessary 
functionalities for completing propagation session for different engines. Such functionalities 
include: TFTP/FTP server for "BindShell" engine and TCP server for uploading the image in 
case of utilization ED&E engine. 

Utilization of the custom worm with different shell codes of the originally tested worms provided 
test unification and dependability of the results without sacrificing generality of the experiments. 
Moreover, many worms have imperfections in certain modules utilized in propagation session, 
for instance W32.Welchia.A worm has bugs in TFTP server what may result in unsuccessful 
replication. However, the custom worm has more reliable modules and its propagation rate could 
be much higher. 

Experimental Results 

We performed two sessions of experiments. In the first session, we deployed attacks from 
the server host to victim machines utilizing the custom worm equipped with propagation engines 
of the worms subjected to the test (Table 7). During attacks the target hosts were in idle mode. In 
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other words we did not perform or emulate user activity on the victim hosts during the attack 
session. The main goal of these experiments was to estimate false negatives and we did not 
observe any. 

Propagation engine of every worm in the Table 7 was employed in 200 consequent attacks 
perpetrated from the attacker server against randomly selected victim hosts. During these attacks 
our system monitored corresponding vulnerable processes and correctly detected and recognized 
propagation engines for every attack session indicating no false negatives and no false positives. 

It could be seen that the original worms utilize different exploits and some of them attack 
different windows versions. However, we used the same version of PED in both windows 
versions. The last column depicts propagation engine and a protocol used for retrieving the worm 
to the victim machine. We should point out that W32.Ibero worm and W32.Shelp worms utilize 
very different realizations of the executable download and execute engines. W32.Ibero directly 
retrieves a worm copy through the open TCP channel. And W32.Shelp uses HTTP commands to 
download worm image from the dedicated web site. However, in spite of realization differences 
in engines, PED successfully recognized the propagation engine type what indicates high 
reliability of the proposed approach. 

Table 7. Network Worms Being Tested 

Worm name (aliases) 
Vulnerability 
(MS code) 

Target system Propagation engine 
(upload protocol) 

W32.Welchia.A 
DCOM        RPC 
(MS03-026) 

WinXPSpl Reverse shell (TFTP) 

W32.Sasser.C 
LSASS   (MS04- 
011) 

Win 2000 Sp4, 
WinXPSpl 

Bindshell (FTP) 

W32.Zotob.F (Bozori.A) 
Plug   and    Play 
(MS05-036) 

Win 2000 Sp4 Bindshell (TFTP) 

W32.1berio (Hiberium.B ) 
Plug   and    Play 
(MS05-036) 

Win 2000 Sp4 

Executable download 
and Execute (direct 
download through TCP 
channel) 

W32.Raleka 
DCOM        RPC 
(MS03-026) 

WinXPSpl 
Bindshell (ECHO, direct 
injection) 

W32/Alasrou-A (Small.D) 
LSASS   (MS04- 
011) 

Win2000 Sp4, 
WinXPSpl Bindshell (TFTP) 

W32.Kassbot(W32.Nanspy) 
DCOM        RPC 
(MS03-026) WinXPSpl Bindshell (TFTP) 

W32.Shelp 
LSASS   (MS04- 
011) 

Win 2000 Sp4, 
WinXPSpl 

Executable download 
and Execute (HTTP 
from dedicated site) 

W32.Blaster (Lovesan) DCOM        RPC 
(MS03-026) 

WinXPSpl Bindshcll (TFTP) 

W32.Francette DCOM        RPC 
(MS03-026) 

WinXPSpl Bindshell (TFTP) 
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The second experimental session was performed on particular, attack free hosts to determine 
false positives. The PED system monitored regular legitimate processes maintaining most 
windows services such as: lsass, svehost (RPC DCOM), winlogon, csrss and etc. PED also 
observed processes representing several applications such as: word processors, picture editors, 
file managers and internet browsers. On these virtual machines we browsed internet, manipulated 
files, managed various windows components and performed other activity trivial for an advanced 
user. None of the monitored processes caused false positive, since they did not exhibit any 
behavior being attributed to the shell code activity. 

The outcome of the experiments described above indicates zero false positive and zero false 
negative for limited set of legitimate processes and ten worms (Table 7) tested during limited 
time period. While authors believe that the proposed approach is able to detect most of the 
existing worms and any feature worms with standard propagation engines, such high detection 
rate is not guaranteed to be consistent for the feature malware attacks. The authors do realize that 
no detection technique is perfect and it is expected that some sophisticated adversary may create 
a worm with totally new propagation engine which is not yet reflected in the CP-net. However, a 
new propagation engine must have certain pattern in system call domain and may be easily 
incorporated into the Petri Net of PED ensuring feature detections of the worms based on the 
new engine 
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6.0   CONTINUOUS STATUS ASSESSMENT OF A COMPUTER NETWORK 

Implementation of an automatic network defense system described in Section 4 requires 
continuous estimation of the number of infected hosts and the activity level of the anti-worm. It 
could be seen that this task cannot be accomplished without a network scanning activity 
conducted in a worm-like fashion, however this would have a negative impact on network 
bandwidth. Performing this task with minimum scanning presents an important problem that was 
not addressed in known literature. Existing publications have addressed only the scanning issue 
in light of passive network assessment being a part of network intrusion detection systems [69]. 
Passive network assessment is performed in order to detect an actual worm outbreak based on 
suspicious activity by listening to unused IP space, detecting malicious scanning and evaluating 
the dynamics of worm propagation. This may not be applicable for accurately estimating the 
number if infected hosts in the presence of both worm and anti-worm activity. 

The scanning approach presented herein has different goals, and could be addressed as active 
scanning. First, it is performed after the worm has been detected. Second, we control the level of 
scanning in order to minimize the impact on bandwidth in the presence of both worm and anti- 
worm activity. Third, we have a means for managing estimation error. 

In order to obtain the most reliable network status information (such as the number of infected 
hosts), one has to scan the entire network with some periodicity, consistent with the dynamics of 
the worm propagation process. For large networks such as wide-area or corporate class local 
networks, scanning all hosts from several dedicated nodes may consume a significant portion of 
the available bandwidth and negatively affect network operations. For middle and small sized 
local networks a single scan of every host will not consume much bandwidth. Nevertheless, due 
to modern worm's fast propagation rates, scanning must be performed at a very high rate, 
causing the same detrimental effect on the bandwidth. Hence, scanning all of the individual hosts 
on a network in a purely worm-like fashion is clearly unacceptable. However, one can take 
advantage of a selective scanning approach, which implies scanning some randomly chosen 
group (a small sample) of computers that represents the entire network. Such an approach, 
commonly utilized in quality control, allows one to estimate the number of infected computers in 
the network using statistical inference techniques without significantly impacting network 
bandwidth. 

6.1. Network Status Assessment 

To minimize session time as well as bandwidth consumption by scanning activities, one has to 
minimize the number of hosts that arc scanned during each session. However, decreasing the 
sample size will increase the estimation error. Hence, we have to investigate a trade-off between 
estimation error and scanning sample size. 

The estimation error can be defined in relative as well as absolute terms. When the estimate of 
some variable has a large value, there is usually more concern about relative error, while for 
small values of the estimate, the absolute error is more important. As a result, in this context, we 
can formulate the following estimation problem: define the minimum number of scanned hosts 
during one session, which ensures relative error or absolute error to fall below some prescribed 
threshold. Formally such a problem could be presented in the following way: 
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I = mmlneN\(\0(n)-0\/0<S) or (\0(n)-O\< A)) (26) 

where / is the sample size (number of scanned hosts), #is the number of infected computers in 

the network, 0 is the estimate of the number of infected computers based on the sample with size 
n, 8 is the specified relative error level and A is the specified absolute error level. 

Then the estimate in successive sessions is computed for samples with size/. Before solving the 
stated problem, one must also consider the underlying statistical distribution to be assumed for 
the estimates. 

6.2. Justification of the Underlying Distribution 

The problem of estimating the number of infected computers in the network is technically similar 
to the problem of estimating the number of defective items in a manufacturing batch process. For 
a known population size and a fixed sample size, such a problem is usually solved by the method 
of moments estimation under the assumption of an underlying geometric distribution. However, 
in reality we do not know the exact number of vulnerable hosts (population size) since computers 
may be arbitrarily connected and disconnected from the network. Obviously, this will cause an 
oscillation in the number of reachable (vulnerable) hosts, and as a result, a geometric distribution 
is not applicable. 

On the other hand, if the number of susceptible hosts is sufficiently large, we do not have to 
know exact number of vulnerable computers to apply the binomial distribution. The binomial 
distribution has the following formula (mass function): 

P-(\-PT OD 

where p is the binomial proportion parameter. 

In the context of this problem P{m) is the probability that in the sample of n scanned hosts, 
where m of them are infected. One can assume that the number of the infected computers in the 
fixed size sample is distributed according to the binomial distribution with an expected value that 
is equal to the proportion of the infected computers in the entire network. However, to be able to 
use statistical inference techniques to estimate the expected value, we have to ensure that the 
sample is identically and independently distributed. In other words, the source must be stationary 
during the sampling session. For these reasons we impose the following technical requirements 
on the system: 

Requirement 1: Queried hosts are chosen uniformly and randomly. 
Requirement 2: During the sampling process the selected number of vulnerable hosts and 
the number of infected machines do not change. 

The first requirement provides independence and can be achieved using a random generator. The 
second requirement enforces the identity property and can be satisfied only if computers are 
scanned pseudo simultaneously. 
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6.3. Solution of the Estimation Problem 

The portion of the infected hosts in the network can be obtained using a confidence interval, 

which would contain a true value with some specified probability. Note that for the (1 — ör) 

confidence interval 0e [c{n,a)-r(n,a), c(n,a) +r(n,a)] is based on an n sized simple, the 

estimate being the center of the interval c(n,a) and would have an absolute error with respect to 

the true value of the parameter of not more than the radius of the interval r(n,a), with a 
probability equal to its confidence level. Therefore, we can formalize the estimation problem 
(26) in terms of confidence intervals in the following way: 

I = min{neN\(r(n,a)<c(n9a) 6) or [r{n,a)< A)]   (28) 

Assuming the binominal distribution (27), we can define a confidence interval for a binominal 
proportion parameter as being an interval estimate of the share of infected hosts. Therefore, we 
can solve problem (28) with respect to the proportions of infected hosts in the network. 
However, to be able to solve the problem analytically, we must utilize the closed-form 
expression of the confidence interval. 

The exact confidence interval for a binomial proportion cannot be obtained in a closed-form by 
inverting the acceptance region. Hence, there are several approximations of the confidence 
interval based on the Central-Limit Theorem. Nevertheless, the approximations in analytical 
form do not guarantee a uniform coverage probability for the entire range of the estimated 
parameter. In contrast, the Clopper-Pearson exact interval, computed using numerical methods, 
provides an assigned coverage probability with any specified precision. 

Therefore, taking into account these considerations, we propose to use an approximate 
confidence interval to compute the initial approximation (first guess) of / in (28) and then iterate 
using an exact interval to achieve the best solution. 

The Clopper-Pearson (exact) interval for binomial proportions can be represented by the 
following set: 

{0:P[X<k]>al2}n{0:P[X>k}>a/2}. (29) 

where 0 is the binomial proportion (estimated parameter), X is the binomial random number, k 
is the number of infected computers in the sample, n is the sample size, and 1 - a is the coverage 
probability (confidence level). 

For the first guess, we can utilize available approximate confidence intervals. The most widely 
recommended approximate interval is Wilson interval [70], which has the following analytical 
form: 
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where 

c{0,n,a) is the center the obtained interval, 

r(0ji,a) is the interval radius, 

6 is the maximum likelihood estimate of the binomial proportion (sample mean). 

For a known 0 and specified (1 -ör) confidence level, we can substitute terms from (30) into 
formula (29) and solve for /. One can easily verify that the solution can be reduced to simple 
quadratic equations and solved in closed form. 

The minimum sample size brings the estimation error to the specified level. Thus the problem 
presented by Equation 3 can be reduced to maintaining the assigned relative error or absolute 
error limits. This requires the use of a feedback control system with swappable controlled 
outputs. We used proportional-integral (PI) controller in the control loop which is schematically 
presented in Figure 12. It could be seen that the number of scanned computers plays the role of 
the control effort and the controlled variable represents the relative or absolute error. 

In Figure 12, the PI controller computes sample size and applies it to the network scanner which 
estimates the number of infected hosts and computes estimation errors. If the deviation of the 
relative error is less than normalized deviation of the absolute error, then the relative error will 
be controlled and vise-versa. Controller gains are specified for each of the two controlled errors. 
In order to prevent undesired frequent controlled output switching, we introduced a limitation on 
the minimum number of iterations (scanning sessions) before a toggle is allowed. Such an 
approach minimizes the value of the applied input (the sample size). 

.■ _ ___^ 
- 

.  • • . 

Figure 12: Control Sytem with PI Controller 

The procedure implementing the system is presented in Figure 13 in more detail. The following 
notations were assumed: S is the relative error set, A is absolute error set. A- is the number of 
infected computers in the current sample, \-a is the coverage probability, Xn is a binominal 

random variable for n trials (scanned hosts), K,   tK* s are the assigned integral and proportional 
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gains for absolute error accordingly, K-el,K™' are the assigned integral and proportional gains 

for relative error accordingly, and m is the minimum number of scanning sessions allowed before 
switching can occur. As the first step, the initial approximation of the minimum size is computed 
for some initial sample, specified relative error set and absolute error set. Then, in the step 2, n 
hosts are scanned to generate a new sample. Next, a confidence interval for the scanned sample 
(step 3) is determined. In step 4, deviation of relative error e" as well as normalized deviation of 
the absolute error e is computed2. If relative error deviation was larger than absolute error during 
at least m iterations (scanning sessions), then the controlled output will be assigned to the relative 
error and the PI controller will switch to the corresponding gains. Similarly, the controller will be 
switched from relative to absolute error mode if the opposite situation is encountered. This 
control procedure will maintain relative error or absolute error based on the specified level with a 
minimum number of scanned computers in the sessions. 

"The absolute error discrepancy is used in normalized form in order to be able to compare to relative error 

discrepancy. 
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6.4. Numerical Experiment 

The numerical experiment was conducted to validate: the proposed technique by simulation of 
the complex interaction of worm, anti-worm and network bandwidth; the computation of the 
"true" number of infected hosts throughout this interaction; and the estimation of this number via 
the proposed approach. We used the discrete-time model presented in Section 3 to generate 
worm propagation dynamics. 

The proposed estimation procedure was implemented in MATLAB. First we simulated the 
propagation of the worm using the discrete model and recorded worm population dynamics. 
Then we run the estimation procedure were we utilized binominal random number generator 
with proportion parameter set to the current number of infected hosts recorded in the trace array. 
In every time tick, the estimation procedure computed the sample size and random generator was 
used to simulate results of scanning. Figure 14 shows the results of the proposed procedure 
executed in trace-based simulation. 
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Figure 14: Dynamics of the Estimation Process 
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The relative error reference was set to 15% and the absolute error reference was set to 50 (hosts). 
The upper plot shows the confidence interval and the true value (in the middle) of the number of 
infected computers obtained from the model above. The middle plot illustrates relative error (left 
axis) and absolute error (right axis). The axis of the middle plot is scaled so that the references 
(0.15 to the left and 50 on the right axis) will geometrically coincide. The lower plot shows the 
sample size during each scanning session. 

One can see that the true value of the infected hosts always remained within the confidence 
interval, indicating a consistent coverage probability for the exact interval. In the middle plot, the 
estimation error graphs have been marked out in bold in those sections where the particular error 
was controlled in the corresponding time period. We noted that for every instance (scanning 
session) whether relative error nearly converged to the reference (0.15) or absolute error 
converged to the reference (50). In fact, the output signal was switched from absolute to relative 
error at time tick 65 and back to absolute error at time tick 352. This result shows the proposed 
procedure's reliability and stability. 

54 



7.0   EXPERIMENTAL COMPUTER NERWORK FACILITY AT BINGHAMTON 

UNIVERSITY 

The demand for higher degree of security is rapidly increasing within all levels of society, from 
individual computer users, to corporations and governments. Recently, cyber attacks on 
individual high profile targets within corporations, government and military infrastructures for 
the purpose of monetary profit, espionage and various destructive activities including global 
terrorism are on the rise. New attack schemes are being developed constantly including fast 
propagating internet worms carrying destructive payloads [1]. Scheduled backups and updated 
antivirus databases are no longer sufficient [71] for an adequate stand off against modern 
information attacks assuring uninterrupted network operation and data integrity. This situation 
nessisitates rapid analysis of information security threats in order to be able to achieve a 
significant level of success in fighting current attacks, as well as introduction of proactive 
measures to prevent future attacks [72]. Research in information assurance has significantly 
evolved over the past decade. 

The most widely used approach to evaluate new network algorithms and their implementations 
for the Internet and Intranet environments are software network simulators [73] and small scale 
hardware node network testbeds. Evaluations of information security algorithms that do not 
require network connection or only require local connections within a small scale network are 
often performed in virtual environments such as Virtual PC and VMWare. Existing network 
simulators are rarely applicable to information security research and development, since many 
attack scenarios require the presence of actual vulnerable systems within the network for 
successful attack deployment and the following realistic network behavior analysis. Attack 
scenarios that are suitable for software network simulators often must be implemented according 
to specific requirements and topologies of the simulator that may differ from actual Internet 
environment, leading to less realistic experiments and questionable results. In addition, software 
simulators are not capable of emulating large scale network attack scenarios in real time at a rate 
one would expect from a physical network. On the other hand, physical network testbeds for 
information security experiments, while being closer to a real network topology and 
performance, lack the scalability of software network simulators and do not allow for rapid 
manipulation of both physical and software network resources, making it difficult to switch from 
one attack scenario to another. 

The dependability of any experimental study in the area of information security research and 
development, hinges upon three main principles: 

• Realistic network topology with real-time performance 
• Rapid network topology modification and deployment 
• Fast recovery after attack experiment 

These principles require the evaluation of network attacks using actual nodes interconnected to 
form an Internet or Intranet network topology with flexibility of virtual environments for rapid 
modifications, deployment and recovery. This paper presents a design of a virtual computer 
network testbed utilizing both physical hardware and virtual software resources to enable rapid 
evaluation of new network security threats, new algorithms and methods for both retroactive and 
proactive attack countermeasures, as well as analysis and forecast of network performance under 
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various attack scenarios. The described test environment offers a realistic experience and 
performance of a physical hardware network, the flexibility of a software network emulator, and 
fast state recovery of a virtual machine in a lab environment. 

7.1. Hardware Lab Design 

Hardware infrastructure design is critical for any network security testbed. Depending on the 
overall design of the lab's topology, its hardware component can be chosen to meet specific 
needs of the lab. Designing a versatile network testbed based on virtual environments helps 
lowering the costs of hardware equipment, while enhancing the overall performance and 
resource utilization within the facility. In addition, the lab is designed to allow remote online 
access to the testing facility. Therefore, certain investments should be made in acquiring 
hardware that would provide an adequate security level for the lab infrastructure. The hardware 
acquisition was funded by a 5185,000 Air Force DURIP grant. This section outlines the 
hardware component of the testbed. 

Scalable computer network facilities 

7.1.1.   Scalable Computer Network Facilities 

The controlled physical environment provides a safe, realistic and flexible foundation on which 
virtual networks can be constructed. The physical environment should be built and preconfigured 
to meet certain specification. The authors have defined the following minimal set of general 
specifications for an information security research and development testbed hardware 
infrastructure: 

• High performance enterprise class servers with sufficient resources to handle multiple 
virtual appliances 

• Dual network interfaces to support dedicated physical networks for malicious traffic and 
network management traffic 

• Centralized storage for virtual components 
• Dedicated terminals for network control and observation 
• Dedicated security appliances to support network traffic filtering and secure remote lab 

management 
• Centralized storage for testbed software backup images. 
• Restricted physical access to testbed hardware component 

Virtual machines (VM) allow for very efficient hardware resources utilization, while creating a 
scalable heterogeneous network environment. A reasonably powerful hardware server is capable 
of running 10-20 modern operating systems depending on OS type and resource hardware 
resource requirements. Due to the nature of network security research, operating system 
requirements per virtual machine can be pushed to the lower limit to accommodate a wider range 
of OS's running on the same physical server. 

Virtual machines comprising the software backbone of the information security testbed require 
configuration and management. The testbed is designed to be configured both locally and 
remotely through management consoles and observation stations. At the same time the sensitive 
nature of the experimental studies to be conducted requires physical isolation of malicious traffic 
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from management traffic to prevent physical network and the external infrastructure from being 
compromised by malicious activity, and also to assure uncontaminated malicious traffic and 
network performance data. Figure 15 demonstrates the concept of dual interface for test lab 
management and experiments. 
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Figure 15 Dual Network Interface for concurrent execution of testbed experiments and lab 
management 

An efficient virtual testbed requires a high degree of scalability. This implies the ability to 
choose various virtual components according to a predefined scenario of an experiment, and 
deploy these components onto the hardware framework. Large-scale network security 
experiments involve a large number of virtual components, distributed across multiple hardware 
nodes. In this situation, utilizing local server storage for storing all variations of virtual 
components is not sufficient, nor is it adequate for a large scale network testbed. A centralized 
storage facility, such as Network Attached Storage unit (NAS), for various virtual components 
enables network wide access to all available virtual components from any physical servers. Such 
a centralized storage should be efficiently protected from the experimental network to avoid 
malicious contamination. Therefore, it should be physically separated from the attack switch by 
having the storage facility connected only to the management network. 

The network testbed is built to sustain network attack experiments of various nature, including 
real malware and exploits bearing harmful payloads. Although, most outbreaks of attacks will be 
contained within virtual environments that can be restored to their original state immediately at 
run time, operating systems hosting these virtual environments may also be corrupted due to 
improper virtual component handling and other issues. In order to assure rapid deployment and 
utilization of all available hardware units, it is highly desirable to have a centralized storage 
facility for backup images of host operating systems and their configurations. 
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7.1.2.   Secure Network Administration 

The security network testbed is designed to be accessible remotely to enable on demand 
reconfiguration, deployment and experimentation by multiple users. Therefore, the network 
security measures must prevent any accidental connections or packets reaching the WAN or the 
Internet. As it has been mentioned, the initial precaution is to physically separate malicious 
traffic from management traffic by introducing dedicated network switches. The next step is to 
prevent any accidental connections or packets from reaching the WAN or the Internet. Network 
security measures that must be in place include: default routes, router ACLs, network 
configuration, network monitoring, and the lab Firewall. 

Default routes are facilitated by the router; the appliance has a default route to its internal 
interface, thereby stopping any traffic not explicitly bound for networks, not connected to the 
router interface. Consequently, any packets intended for servers not connected to the network 
testbed would not reach their intended destination. The router ACLs will impose an access rule 
on all traffic attempting to exit its primary interface. This access rule will effectively block all 
traffic that is not explicitly destined for the user accounts server. This ACL will prevent any 
Internet traffic from going beyond the router. 

The user accounts server network configuration includes two networking interfaces for 
communicating with the testbed, and one interface for communicating with the firewall 
appliance. No other communication will exist within the user accounts server. 

The main Firewall of the network testbed is represented by Firewall appliance with unlimited 
number of clients to facilitate incoming user administration. This Firewall provides network 
address translation to the Internet and the WAN only for the user accounts server; it must deny 
all unauthorized inbound initiated connections. Any traffic inconsistent with the acceptable 
traffic will be logged and disallowed. The complete physical network topology is shown in 
Figure 16. 
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Figure 16 Hardware Testbed Topology 

7.2. Software Lab Design 

An efficient network security testbed includes a large variety of systems that are subjected to 
research and analysis. Such systems include both hardware and software components. In the past, 
information security testbeds contained a comparable number of both components, which led to 
inefficient testbed management and high costs of ownership. Current technology enables higher 
hardware utilization through software virtualization of various hardware components. This in 
turn allows researchers to have complete centralized control of the testbed, as well as the ability 
to modify the topology of the network without intruding testbeds' hardware. This section 
describes the design of the network, which supports virtual network infrastructure management 
for information security research and analysis. 

7.2.1.   Design of the Testbed Management Model 

Modern network security research and development demands testbed facilities, designed to 
handle a larger number of security experiments in a shorter time. Most current network security 
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threats propagate and attack large-scale networks in a matter minutes causing significant 
damage. New security threats emerge quickly, requiring researchers and security analysts to 
respond faster in order to keep up with these attacks. New approaches for network security 
analysis, reactive and proactive network defense mechanisms should be evaluated under various 
network topologies to prove their effectiveness. Conventional hardware based network security 
testbeds always have certain tradeoffs between network scalability and deployment cycle. 

On the contrary, virtual networks allow for practically unlimited variations of network 
topologies, while delivering on demand network topology deployment cycle. To demonstrate a 
simplified example of virtual testbed capabilities, consider the design of a typical hardware based 
network security testbed shown in Figure 17. 
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Figure 17: Typical Network Security Hardware-based Testbed 

The way it is designed, this testbed is capable of handling large spectrum of network security 
experiments. Assuming that each physical node in this topology is a host for multiple virtual 
devices, such as operating systems, servers, switches, routers, etc. (Figure 18), this design can be 
converted into a new topology, as shown in Figure 19, significantly faster than in a conventional 
hardware based testbed without requiring extra equipment. 
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Figure 18: Virtual Network within a Single Hardware Node 

The entire testing facility of the network security virtual testbed is constructed of virtual devices. 
All virtual machines are deployed on a set of physical servers, powerful enough to handle large 
CPU, memory and network bandwidth loads. Furthermore, all virtual machines are stored in a 
single storage container; they can be configured and deployed to create various network 
topologies. The capacity of the physical network backbone can handle hundreds of virtual 
devices running at the same time. A significantly larger number of virtual appliances are required 
to support various network topologies for information security research; one reason is because 
there may be different security vulnerabilities in different versions of same software package 
installed in a virtual machine. A prebuilt set of such virtual machines is required to have dynamic 
reconfigurable test environments within the testbed. 
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Figure 19: New Network Topology on Two Physical Nodes 

The set of virtual appliances should be managed from a centralized, possibly remote location. 
Our management model requires several levels of software comprising the structure of the 
network security virtual testbed environment. The software management stack is shown in 
Figure 20. The host operating system consumes hardware resources when running virtual 
appliances. It is crucial to have the lightest possible host operating system in order to preserve 
valuable hardware resources for virtual components. Every virtual component is configured to 
have a limited set of resources, supplied by the hardware node. Due to potentially harmful 
malicious traffic flow within the network testbed, virtual appliances should be restricted from 
utilizing any means of network communications other than a dedicated malicious attack, in 
accordance with the testbed hardware configuration (Figure 16). The host operating system, 
having access to all virtual appliances it hosts, should collect information regarding their current 
state, resources consumption and network traffic logs, and report them to the Virtual Network 
Management Server. The server is responsible for management and configuration of virtual 
machines within multiple physical nodes of the testbed. 
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Figure 20: Network Security Testbed Management Software Stack 

The next step in testbed management is to allow clients to control and configure the network 
properly. Due to security concerns and sensitive nature of the testbed, at least two levels of client 
management is established. We differentiate local and remote client access to the testbed. where 
the local client has higher privileges compared to the remote client. The local management client 
is only accessible within the physical facility. It is allowed to do the following operations on the 
security testbed: 

• Access managed switches for both malicious and management networks 
• Perform configuration of physical nodes 
• Manage the pool of host operating system images 
• Backup and restore host operating systems 
• Manage the pool of virtual appliances 

The remote management client has access to control and configuration of the pool or a subset of 
virtual appliances to perform network security experiments. The following is the list of 
operations performed by the remote client: 

• Limited management of the pool of virtual appliances 
• Configuration of the virtual network topology 
• Deployment of the virtual network topology to reserved physical node 
• Setup and execution of network security experiments on the created virtual network 

topology 
• Observation, collection and analysis of information resulted from the experiment 

It is possible to configure a remote management client account to allow performing actions 
restricted only to the local facility clients. In this case additional account management layer 
should be introduced to facilitate elevated access rights for the remote lab manager. 
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7.2.2.   Design of Network Security Experiments 

Network security experiments require large scale network testbeds. The virtual testbed is 
organized such that rapid deployment of various large-scale experiment scenarios is possible. 
The testbed provides important information for the computer network security research including 
analysis of malicious software, vulnerability analysis of network components, efficiency and 
dependability of security mechanisms, and network administration under attacks. The availability 
of a dedicated virtual experimental testbed allows researchers to deploy real information attacks 
and defense mechanisms with close monitoring of the status of the network. Virtual network 
experiment design is coherent with known techniques for simulated networks experiments and 
hardware based virtual networks [74]. The major advantage over known experiment design 
approaches is the ability to rapidly configure complex network topologies without direct access 
to hardware facility. The other advantage is the ability to choose various network components 
including operating systems, routers, servers, switches, etc., from a large centralized pool of 
preconflgured virtual appliances. 

In order to facilitate an internet worm propagation experiment, the researchers have to configure 
the virtual network according to their experiment specifications [75]. Generally, specifications 
for worm propagation experiments include: 

• The ability to reproduce the worm propagation in high fidelity 
• Assessment of the impact of worm propagation on large scale networks 
• Introduce worm detection defense mechanism 
• Assessment of the impact of the detection mechanism on the network 

Typically, network worm propagation rate greatly depends on availability of vulnerable systems 
compatible with the worm's exploit vector. Worms may carry destructive payloads, deployable 
on a vulnerable system after successful penetration. Often, the propagation engine of a worm 
heavily depends on success of its payload, further reducing propagation rate due to incompatible 
systems. A realistic worm propagation experiment on a virtual network testbed should take 
advantage of generating a large variety of susceptible operating systems and their configurations. 
Rapid adjustments to virtual network topology allows for fast elimination of invulnerable hosts 
to increase the rate of replication. This also advances realistic network damage assessment due to 
increased worm propagation rate. In the virtual network testbed environment, the researcher can 
visually select virtual appliances to be a part of the experiment, and connect these appliances to 
form a unique topology. A simplified virtual network topology including various operating 
systems connected through virtual switches operating on three hardware nodes is shown in 
Figure 21. 
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Figure 21: Virtual Network Topology for Worm Propagation Experiment Generated on 3 
Hardware Nodes 

Network damage assessment is performed by capturing required information from each virtual 
machine involved in the experiment. The information is collected from the management network 
(Figure 16), which controls all physical host, and therefore virtual appliances running on them. 
Malicious traffic may also be safely captured from special 1000 Mbps network ports, available 
on managed malicious traffic switches. 

Further development of the experiment depends on the need to introduce a worm detection and 
defense mechanism into the network. If it is required to use the exact same topology, which has 
been successfully tested against worm propagation, for a proactive worm defense mechanism, 
the entire state of all virtual nodes within the network can be restored to its original uninfected 
condition. Otherwise, the worm defense agent can be introduced into an infected network. 

65 



8.0   CONCLUSION 

The development of a fully automatic computer network security system capable of timely 
detection and mitigation of information attacks perpetrated by self-replicating malicious software 
is justified. Modern immunology presents a comprehensive example of such a system and 
demonstrates its major principles of operation. An extensive literature review provides 
background for the formulation of these principles as applied to a computer network. A 
configuration of a fully automatic computer network defense mechanism implementing active 
immune-type response is proposed. 

Mathematical modeling of active immune-type response is a necessary basis for the deployment 
of the biologically-inspired defense mechanisms for computer networks. Such a model is 
formulated as a set of nonlinear equations describing complex interactions between three key 
factors representing the status of a computer network: the remaining amount of the network 
bandwidth, the number of infected hosts and the number of deployed self-replicating defense 
agents. A continuous-time and discrete-time models have been developed and utilized for the 
simulation of active immune-type processes in a computer network. 

The concept of anti-worm, a self-replicating highly specialized software module is formulated. 
Various issues addressing feasibility, control of the propagation rate, discriminatory ability of the 
anti-worm are discussed; various solutions are proposed and supported by known literature. 

The authors applied modern automatic control theory for the development of a negative feedback 
control mechanism responsible for the propagation rate of the deployed anti-worm. This 
mechanism assures that the resultant active immune-type process in the computer network is 
globally asymptotically stable, that could be interpreted as the ability of the network to recover 
form the information attacks perpetrated by computer worm. 

A technology for selective sampling (scanning) of the network hosts and statistical analysis of 
the scanning results for the network status assessment is developed and tested using by computer 
simulation. While the ''actual", i.e. simulated status of the network is known beforehand, the 
developed approach showed its ability to monitor the network status with the required degree of 
statistical confidence. A trade-off between the impact on the network bandwidth and the 
confidence of the status estimation is demonstrated. 

Based on the previously developed concept of dynamic code analyzer (DCA), the authors 
developed and evaluated Propagation Engine Detector (PED) system capable of detecting attacks 
perpetrated by network worms. This system detects the worm shell code activity performed by a 
process during the attack session. Moreover, PED recognizes the type of propagation engine 
employed by the worm exploiting the process. The developed PED system utilizes Colored Petri 
nets (CP-net) to trace in parallel interrelated chains of system calls issued by the monitored 
process to recognize high level API functions invoked by the process. The detected high level 
functions in combination are analyzed to determine how the process creates and manipulates 
operation system objects. Such information is finally processed by CP-net to detect if the process 
activity exhibits the functionality of the particular type of propagation engine. 
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While experimental work with "live" malware is potentially dangerous, a safe experimental 
facility is developed for the experimental implementation and validation of the presented results. 
This is perceived as the further development of this research and result in a new paradigm in 
computer network security by employing immune defenses honed to perfection by million-year 
evolution to assure safety and dependability of future computer networks. 
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10.0  LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

AAWP Analytical Active Worm Propagation model 

ACL Access Control List 

AFRL Air Force Research Laboratory 

AIR Active Immune Response 

BASIS Biological Approach to System Information Security 

CERT/CC Coordination Center of Reaction to Computer incidents 

CP-net Colored Petri nets 

IX A Dynamic Code Analyzer 

ED&E Executable download and Execute 

FSM Finite State Machine 

HIV Human Immunodeficiency Virus 

IDS Intrusion Detection System 

NAS Network Attached Storage unit 

PRNG Pseudo Random Number Generator 

PED Propagation Engine Detector 

QoS Quality of Service 
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